1/*-
  2 * SPDX-License-Identifier: BSD-3-Clause
  3 *
  4 * Copyright (c) 1982, 1986, 1993
  5 *	The Regents of the University of California.  All rights reserved.
  6 *
  7 * Redistribution and use in source and binary forms, with or without
  8 * modification, are permitted provided that the following conditions
  9 * are met:
 10 * 1. Redistributions of source code must retain the above copyright
 11 *    notice, this list of conditions and the following disclaimer.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. Neither the name of the University nor the names of its contributors
 16 *    may be used to endorse or promote products derived from this software
 17 *    without specific prior written permission.
 18 *
 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 29 * SUCH DAMAGE.
 30 *
 31 *	@(#)time.h	8.5 (Berkeley) 5/4/95
 32 */
 33
 34#ifndef _SYS_TIME_H_
 35#define	_SYS_TIME_H_
 36
 37#include <sys/_timeval.h>
 38#include <sys/types.h>
 39#include <sys/timespec.h>
 40#include <sys/_clock_id.h>
 41
 42struct timezone {
 43	int	tz_minuteswest;	/* minutes west of Greenwich */
 44	int	tz_dsttime;	/* type of dst correction */
 45};
 46#define	DST_NONE	0	/* not on dst */
 47#define	DST_USA		1	/* USA style dst */
 48#define	DST_AUST	2	/* Australian style dst */
 49#define	DST_WET		3	/* Western European dst */
 50#define	DST_MET		4	/* Middle European dst */
 51#define	DST_EET		5	/* Eastern European dst */
 52#define	DST_CAN		6	/* Canada */
 53
 54#if __BSD_VISIBLE
 55struct bintime {
 56	time_t	sec;
 57	uint64_t frac;
 58};
 59
 60static __inline void
 61bintime_addx(struct bintime *_bt, uint64_t _x)
 62{
 63	uint64_t _u;
 64
 65	_u = _bt->frac;
 66	_bt->frac += _x;
 67	if (_u > _bt->frac)
 68		_bt->sec++;
 69}
 70
 71static __inline void
 72bintime_add(struct bintime *_bt, const struct bintime *_bt2)
 73{
 74	uint64_t _u;
 75
 76	_u = _bt->frac;
 77	_bt->frac += _bt2->frac;
 78	if (_u > _bt->frac)
 79		_bt->sec++;
 80	_bt->sec += _bt2->sec;
 81}
 82
 83static __inline void
 84bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
 85{
 86	uint64_t _u;
 87
 88	_u = _bt->frac;
 89	_bt->frac -= _bt2->frac;
 90	if (_u < _bt->frac)
 91		_bt->sec--;
 92	_bt->sec -= _bt2->sec;
 93}
 94
 95static __inline void
 96bintime_mul(struct bintime *_bt, u_int _x)
 97{
 98	uint64_t _p1, _p2;
 99
100	_p1 = (_bt->frac & 0xffffffffull) * _x;
101	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
102	_bt->sec *= _x;
103	_bt->sec += (_p2 >> 32);
104	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
105}
106
107static __inline void
108bintime_shift(struct bintime *_bt, int _exp)
109{
110
111	if (_exp > 0) {
112		_bt->sec <<= _exp;
113		_bt->sec |= _bt->frac >> (64 - _exp);
114		_bt->frac <<= _exp;
115	} else if (_exp < 0) {
116		_bt->frac >>= -_exp;
117		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
118		_bt->sec >>= -_exp;
119	}
120}
121
122#define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
123#define	bintime_isset(a)	((a)->sec || (a)->frac)
124#define	bintime_cmp(a, b, cmp)						\
125	(((a)->sec == (b)->sec) ?					\
126	    ((a)->frac cmp (b)->frac) :					\
127	    ((a)->sec cmp (b)->sec))
128
129#define	SBT_1S	((sbintime_t)1 << 32)
130#define	SBT_1M	(SBT_1S * 60)
131#define	SBT_1MS	(SBT_1S / 1000)
132#define	SBT_1US	(SBT_1S / 1000000)
133#define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
134#define	SBT_MAX	0x7fffffffffffffffLL
135
136static __inline int
137sbintime_getsec(sbintime_t _sbt)
138{
139
140	return (_sbt >> 32);
141}
142
143static __inline sbintime_t
144bttosbt(const struct bintime _bt)
145{
146
147	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
148}
149
150static __inline struct bintime
151sbttobt(sbintime_t _sbt)
152{
153	struct bintime _bt;
154
155	_bt.sec = _sbt >> 32;
156	_bt.frac = _sbt << 32;
157	return (_bt);
158}
159
160/*
161 * Scaling functions for signed and unsigned 64-bit time using any
162 * 32-bit fraction:
163 */
164
165static __inline int64_t
166__stime64_scale32_ceil(int64_t x, int32_t factor, int32_t divisor)
167{
168	const int64_t rem = x % divisor;
169
170	return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
171}
172
173static __inline int64_t
174__stime64_scale32_floor(int64_t x, int32_t factor, int32_t divisor)
175{
176	const int64_t rem = x % divisor;
177
178	return (x / divisor * factor + (rem * factor) / divisor);
179}
180
181static __inline uint64_t
182__utime64_scale32_ceil(uint64_t x, uint32_t factor, uint32_t divisor)
183{
184	const uint64_t rem = x % divisor;
185
186	return (x / divisor * factor + (rem * factor + divisor - 1) / divisor);
187}
188
189static __inline uint64_t
190__utime64_scale32_floor(uint64_t x, uint32_t factor, uint32_t divisor)
191{
192	const uint64_t rem = x % divisor;
193
194	return (x / divisor * factor + (rem * factor) / divisor);
195}
196
197/*
198 * This function finds the common divisor between the two arguments,
199 * in powers of two. Use a macro, so the compiler will output a
200 * warning if the value overflows!
201 *
202 * Detailed description:
203 *
204 * Create a variable with 1's at the positions of the leading 0's
205 * starting at the least significant bit, producing 0 if none (e.g.,
206 * 01011000 -> 0000 0111). Then these two variables are bitwise AND'ed
207 * together, to produce the greatest common power of two minus one. In
208 * the end add one to flip the value to the actual power of two (e.g.,
209 * 0000 0111 + 1 -> 0000 1000).
210 */
211#define	__common_powers_of_two(a, b) \
212	((~(a) & ((a) - 1) & ~(b) & ((b) - 1)) + 1)
213
214/*
215 * Scaling functions for signed and unsigned 64-bit time assuming
216 * reducable 64-bit fractions to 32-bit fractions:
217 */
218
219static __inline int64_t
220__stime64_scale64_ceil(int64_t x, int64_t factor, int64_t divisor)
221{
222	const int64_t gcd = __common_powers_of_two(factor, divisor);
223
224	return (__stime64_scale32_ceil(x, factor / gcd, divisor / gcd));
225}
226
227static __inline int64_t
228__stime64_scale64_floor(int64_t x, int64_t factor, int64_t divisor)
229{
230	const int64_t gcd = __common_powers_of_two(factor, divisor);
231
232	return (__stime64_scale32_floor(x, factor / gcd, divisor / gcd));
233}
234
235static __inline uint64_t
236__utime64_scale64_ceil(uint64_t x, uint64_t factor, uint64_t divisor)
237{
238	const uint64_t gcd = __common_powers_of_two(factor, divisor);
239
240	return (__utime64_scale32_ceil(x, factor / gcd, divisor / gcd));
241}
242
243static __inline uint64_t
244__utime64_scale64_floor(uint64_t x, uint64_t factor, uint64_t divisor)
245{
246	const uint64_t gcd = __common_powers_of_two(factor, divisor);
247
248	return (__utime64_scale32_floor(x, factor / gcd, divisor / gcd));
249}
250
251/*
252 * Decimal<->sbt conversions. Multiplying or dividing by SBT_1NS
253 * results in large roundoff errors which sbttons() and nstosbt()
254 * avoid. Millisecond and microsecond functions are also provided for
255 * completeness.
256 *
257 * When converting from sbt to another unit, the result is always
258 * rounded down. When converting back to sbt the result is always
259 * rounded up. This gives the property that sbttoX(Xtosbt(y)) == y .
260 *
261 * The conversion functions can also handle negative values.
262 */
263#define	SBT_DECLARE_CONVERSION_PAIR(name, units_per_second)	\
264static __inline int64_t \
265sbtto##name(sbintime_t sbt) \
266{ \
267	return (__stime64_scale64_floor(sbt, units_per_second, SBT_1S)); \
268} \
269static __inline sbintime_t \
270name##tosbt(int64_t name) \
271{ \
272	return (__stime64_scale64_ceil(name, SBT_1S, units_per_second)); \
273}
274
275SBT_DECLARE_CONVERSION_PAIR(ns, 1000000000)
276SBT_DECLARE_CONVERSION_PAIR(us, 1000000)
277SBT_DECLARE_CONVERSION_PAIR(ms, 1000)
278
279/*-
280 * Background information:
281 *
282 * When converting between timestamps on parallel timescales of differing
283 * resolutions it is historical and scientific practice to round down rather
284 * than doing 4/5 rounding.
285 *
286 *   The date changes at midnight, not at noon.
287 *
288 *   Even at 15:59:59.999999999 it's not four'o'clock.
289 *
290 *   time_second ticks after N.999999999 not after N.4999999999
291 */
292
293static __inline void
294bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
295{
296
297	_ts->tv_sec = _bt->sec;
298	_ts->tv_nsec = __utime64_scale64_floor(
299	    _bt->frac, 1000000000, 1ULL << 32) >> 32;
300}
301
302static __inline uint64_t
303bintime2ns(const struct bintime *_bt)
304{
305	uint64_t ret;
306
307	ret = (uint64_t)(_bt->sec) * (uint64_t)1000000000;
308	ret += __utime64_scale64_floor(
309	    _bt->frac, 1000000000, 1ULL << 32) >> 32;
310	return (ret);
311}
312
313static __inline void
314timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
315{
316
317	_bt->sec = _ts->tv_sec;
318	_bt->frac = __utime64_scale64_floor(
319	    (uint64_t)_ts->tv_nsec << 32, 1ULL << 32, 1000000000);
320}
321
322static __inline void
323bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
324{
325
326	_tv->tv_sec = _bt->sec;
327	_tv->tv_usec = __utime64_scale64_floor(
328	    _bt->frac, 1000000, 1ULL << 32) >> 32;
329}
330
331static __inline void
332timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
333{
334
335	_bt->sec = _tv->tv_sec;
336	_bt->frac = __utime64_scale64_floor(
337	    (uint64_t)_tv->tv_usec << 32, 1ULL << 32, 1000000);
338}
339
340static __inline struct timespec
341sbttots(sbintime_t _sbt)
342{
343	struct timespec _ts;
344
345	_ts.tv_sec = _sbt >> 32;
346	_ts.tv_nsec = sbttons((uint32_t)_sbt);
347	return (_ts);
348}
349
350static __inline sbintime_t
351tstosbt(struct timespec _ts)
352{
353
354	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
355}
356
357static __inline struct timeval
358sbttotv(sbintime_t _sbt)
359{
360	struct timeval _tv;
361
362	_tv.tv_sec = _sbt >> 32;
363	_tv.tv_usec = sbttous((uint32_t)_sbt);
364	return (_tv);
365}
366
367static __inline sbintime_t
368tvtosbt(struct timeval _tv)
369{
370
371	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
372}
373#endif /* __BSD_VISIBLE */
374
375#ifdef _KERNEL
376/*
377 * Simple macros to convert ticks to milliseconds
378 * or microseconds and vice-versa. The answer
379 * will always be at least 1. Note the return
380 * value is a uint32_t however we step up the
381 * operations to 64 bit to avoid any overflow/underflow
382 * problems.
383 */
384#define TICKS_2_MSEC(t) max(1, (uint32_t)(hz == 1000) ? \
385	  (t) : (((uint64_t)(t) * (uint64_t)1000)/(uint64_t)hz))
386#define TICKS_2_USEC(t) max(1, (uint32_t)(hz == 1000) ? \
387	  ((t) * 1000) : (((uint64_t)(t) * (uint64_t)1000000)/(uint64_t)hz))
388#define MSEC_2_TICKS(m) max(1, (uint32_t)((hz == 1000) ? \
389	  (m) : ((uint64_t)(m) * (uint64_t)hz)/(uint64_t)1000))
390#define USEC_2_TICKS(u) max(1, (uint32_t)((hz == 1000) ? \
391	 ((u) / 1000) : ((uint64_t)(u) * (uint64_t)hz)/(uint64_t)1000000))
392
393#endif
394/* Operations on timespecs */
395#define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
396#define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
397#define	timespeccmp(tvp, uvp, cmp)					\
398	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
399	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
400	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
401
402#define	timespecadd(tsp, usp, vsp)					\
403	do {								\
404		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
405		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
406		if ((vsp)->tv_nsec >= 1000000000L) {			\
407			(vsp)->tv_sec++;				\
408			(vsp)->tv_nsec -= 1000000000L;			\
409		}							\
410	} while (0)
411#define	timespecsub(tsp, usp, vsp)					\
412	do {								\
413		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
414		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
415		if ((vsp)->tv_nsec < 0) {				\
416			(vsp)->tv_sec--;				\
417			(vsp)->tv_nsec += 1000000000L;			\
418		}							\
419	} while (0)
420#define	timespecvalid_interval(tsp)	((tsp)->tv_sec >= 0 &&		\
421	    (tsp)->tv_nsec >= 0 && (tsp)->tv_nsec < 1000000000L)
422
423#ifdef _KERNEL
424
425/* Operations on timevals. */
426
427#define	timevalclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
428#define	timevalisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
429#define	timevalcmp(tvp, uvp, cmp)					\
430	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
431	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
432	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
433
434/* timevaladd and timevalsub are not inlined */
435
436#endif /* _KERNEL */
437
438#ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
439
440#define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
441#define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
442#define	timercmp(tvp, uvp, cmp)					\
443	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
444	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
445	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
446#define	timeradd(tvp, uvp, vvp)						\
447	do {								\
448		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
449		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
450		if ((vvp)->tv_usec >= 1000000) {			\
451			(vvp)->tv_sec++;				\
452			(vvp)->tv_usec -= 1000000;			\
453		}							\
454	} while (0)
455#define	timersub(tvp, uvp, vvp)						\
456	do {								\
457		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
458		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
459		if ((vvp)->tv_usec < 0) {				\
460			(vvp)->tv_sec--;				\
461			(vvp)->tv_usec += 1000000;			\
462		}							\
463	} while (0)
464#endif
465
466/*
467 * Names of the interval timers, and structure
468 * defining a timer setting.
469 */
470#define	ITIMER_REAL	0
471#define	ITIMER_VIRTUAL	1
472#define	ITIMER_PROF	2
473
474struct itimerval {
475	struct	timeval it_interval;	/* timer interval */
476	struct	timeval it_value;	/* current value */
477};
478
479/*
480 * Getkerninfo clock information structure
481 */
482struct clockinfo {
483	int	hz;		/* clock frequency */
484	int	tick;		/* micro-seconds per hz tick */
485	int	spare;
486	int	stathz;		/* statistics clock frequency */
487	int	profhz;		/* profiling clock frequency */
488};
489
490#if __BSD_VISIBLE
491#define	CPUCLOCK_WHICH_PID	0
492#define	CPUCLOCK_WHICH_TID	1
493#endif
494
495#if defined(_KERNEL) || defined(_STANDALONE)
496
497/*
498 * Kernel to clock driver interface.
499 */
500void	inittodr(time_t base);
501void	resettodr(void);
502
503extern volatile time_t	time_second;
504extern volatile time_t	time_uptime;
505extern struct bintime tc_tick_bt;
506extern sbintime_t tc_tick_sbt;
507extern time_t tick_seconds_max;
508extern struct bintime tick_bt;
509extern sbintime_t tick_sbt;
510extern int tc_precexp;
511extern int tc_timepercentage;
512extern struct bintime bt_timethreshold;
513extern struct bintime bt_tickthreshold;
514extern sbintime_t sbt_timethreshold;
515extern sbintime_t sbt_tickthreshold;
516
517extern volatile int rtc_generation;
518
519/*
520 * Functions for looking at our clock: [get]{bin,nano,micro}[up]time()
521 *
522 * Functions without the "get" prefix returns the best timestamp
523 * we can produce in the given format.
524 *
525 * "bin"   == struct bintime  == seconds + 64 bit fraction of seconds.
526 * "nano"  == struct timespec == seconds + nanoseconds.
527 * "micro" == struct timeval  == seconds + microseconds.
528 *
529 * Functions containing "up" returns time relative to boot and
530 * should be used for calculating time intervals.
531 *
532 * Functions without "up" returns UTC time.
533 *
534 * Functions with the "get" prefix returns a less precise result
535 * much faster than the functions without "get" prefix and should
536 * be used where a precision of 1/hz seconds is acceptable or where
537 * performance is priority. (NB: "precision", _not_ "resolution" !)
538 */
539
540void	binuptime(struct bintime *bt);
541void	nanouptime(struct timespec *tsp);
542void	microuptime(struct timeval *tvp);
543
544static __inline sbintime_t
545sbinuptime(void)
546{
547	struct bintime _bt;
548
549	binuptime(&_bt);
550	return (bttosbt(_bt));
551}
552
553void	bintime(struct bintime *bt);
554void	nanotime(struct timespec *tsp);
555void	microtime(struct timeval *tvp);
556
557void	getbinuptime(struct bintime *bt);
558void	getnanouptime(struct timespec *tsp);
559void	getmicrouptime(struct timeval *tvp);
560
561static __inline sbintime_t
562getsbinuptime(void)
563{
564	struct bintime _bt;
565
566	getbinuptime(&_bt);
567	return (bttosbt(_bt));
568}
569
570void	getbintime(struct bintime *bt);
571void	getnanotime(struct timespec *tsp);
572void	getmicrotime(struct timeval *tvp);
573
574void	getboottime(struct timeval *boottime);
575void	getboottimebin(struct bintime *boottimebin);
576
577/* Other functions */
578int	itimerdecr(struct itimerval *itp, int usec);
579int	itimerfix(struct timeval *tv);
580int	eventratecheck(struct timeval *, int *, int);
581#define	ppsratecheck(t, c, m) eventratecheck(t, c, m)
582int	ratecheck(struct timeval *, const struct timeval *);
583void	timevaladd(struct timeval *t1, const struct timeval *t2);
584void	timevalsub(struct timeval *t1, const struct timeval *t2);
585int	tvtohz(struct timeval *tv);
586
587/*
588 * The following HZ limits allow the tvtohz() function
589 * to only use integer computations.
590 */
591#define	HZ_MAXIMUM (INT_MAX / (1000000 >> 6)) /* 137kHz */
592#define	HZ_MINIMUM 8 /* hz */
593
594#define	TC_DEFAULTPERC		5
595
596#define	BT2FREQ(bt)                                                     \
597	(((uint64_t)0x8000000000000000 + ((bt)->frac >> 2)) /           \
598	    ((bt)->frac >> 1))
599
600#define	SBT2FREQ(sbt)	((SBT_1S + ((sbt) >> 1)) / (sbt))
601
602#define	FREQ2BT(freq, bt)                                               \
603{									\
604	(bt)->sec = 0;                                                  \
605	(bt)->frac = ((uint64_t)0x8000000000000000  / (freq)) << 1;     \
606}
607
608#define	TIMESEL(sbt, sbt2)						\
609	(((sbt2) >= sbt_timethreshold) ?				\
610	    ((*(sbt) = getsbinuptime()), 1) : ((*(sbt) = sbinuptime()), 0))
611
612#else /* !_KERNEL && !_STANDALONE */
613#include <time.h>
614
615#include <sys/cdefs.h>
616#include <sys/select.h>
617
618__BEGIN_DECLS
619int	setitimer(int, const struct itimerval *, struct itimerval *);
620int	utimes(const char *, const struct timeval *);
621
622#if __BSD_VISIBLE
623int	adjtime(const struct timeval *, struct timeval *);
624int	clock_getcpuclockid2(id_t, int, clockid_t *);
625int	futimes(int, const struct timeval *);
626int	futimesat(int, const char *, const struct timeval [2]);
627int	lutimes(const char *, const struct timeval *);
628int	settimeofday(const struct timeval *, const struct timezone *);
629#endif
630
631#if __XSI_VISIBLE
632int	getitimer(int, struct itimerval *);
633int	gettimeofday(struct timeval *, struct timezone *);
634#endif
635
636__END_DECLS
637
638#endif /* !_KERNEL */
639
640#endif /* !_SYS_TIME_H_ */