master
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#ifndef _IPFW2_H
29#define _IPFW2_H
30
31/*
32 * The default rule number. By the design of ip_fw, the default rule
33 * is the last one, so its number can also serve as the highest number
34 * allowed for a rule. The ip_fw code relies on both meanings of this
35 * constant.
36 */
37#define IPFW_DEFAULT_RULE 65535
38
39#define RESVD_SET 31 /*set for default and persistent rules*/
40#define IPFW_MAX_SETS 32 /* Number of sets supported by ipfw*/
41
42/*
43 * Compat values for old clients
44 */
45#ifndef _KERNEL
46#define IPFW_TABLES_MAX 65535
47#define IPFW_TABLES_DEFAULT 128
48#endif
49
50/*
51 * Most commands (queue, pipe, tag, untag, limit...) can have a 16-bit
52 * argument between 1 and 65534. The value 0 (IP_FW_TARG) is used
53 * to represent 'tablearg' value, e.g. indicate the use of a 'tablearg'
54 * result of the most recent table() lookup.
55 * Note that 16bit is only a historical limit, resulting from
56 * the use of a 16-bit fields for that value. In reality, we can have
57 * 2^32 pipes, queues, tag values and so on.
58 */
59#define IPFW_ARG_MIN 1
60#define IPFW_ARG_MAX 65534
61#define IP_FW_TABLEARG 65535 /* Compat value for old clients */
62#define IP_FW_TARG 0 /* Current tablearg value */
63#define IP_FW_NAT44_GLOBAL 65535 /* arg1 value for "nat global" */
64
65/*
66 * Number of entries in the call stack of the call/return commands.
67 * Call stack currently is an uint16_t array with rule numbers.
68 */
69#define IPFW_CALLSTACK_SIZE 16
70
71/* IP_FW3 header/opcodes */
72typedef struct _ip_fw3_opheader {
73 uint16_t opcode; /* Operation opcode */
74 uint16_t version; /* Opcode version */
75 uint16_t reserved[2]; /* Align to 64-bit boundary */
76} ip_fw3_opheader;
77
78/* IP_FW3 opcodes */
79#define IP_FW_TABLE_XADD 86 /* add entry */
80#define IP_FW_TABLE_XDEL 87 /* delete entry */
81#define IP_FW_TABLE_XGETSIZE 88 /* get table size (deprecated) */
82#define IP_FW_TABLE_XLIST 89 /* list table contents */
83#define IP_FW_TABLE_XDESTROY 90 /* destroy table */
84#define IP_FW_TABLES_XLIST 92 /* list all tables */
85#define IP_FW_TABLE_XINFO 93 /* request info for one table */
86#define IP_FW_TABLE_XFLUSH 94 /* flush table data */
87#define IP_FW_TABLE_XCREATE 95 /* create new table */
88#define IP_FW_TABLE_XMODIFY 96 /* modify existing table */
89#define IP_FW_XGET 97 /* Retrieve configuration */
90#define IP_FW_XADD 98 /* add rule */
91#define IP_FW_XDEL 99 /* del rule */
92#define IP_FW_XMOVE 100 /* move rules to different set */
93#define IP_FW_XZERO 101 /* clear accounting */
94#define IP_FW_XRESETLOG 102 /* zero rules logs */
95#define IP_FW_SET_SWAP 103 /* Swap between 2 sets */
96#define IP_FW_SET_MOVE 104 /* Move one set to another one */
97#define IP_FW_SET_ENABLE 105 /* Enable/disable sets */
98#define IP_FW_TABLE_XFIND 106 /* finds an entry */
99#define IP_FW_XIFLIST 107 /* list tracked interfaces */
100#define IP_FW_TABLES_ALIST 108 /* list table algorithms */
101#define IP_FW_TABLE_XSWAP 109 /* swap two tables */
102#define IP_FW_TABLE_VLIST 110 /* dump table value hash */
103
104#define IP_FW_NAT44_XCONFIG 111 /* Create/modify NAT44 instance */
105#define IP_FW_NAT44_DESTROY 112 /* Destroys NAT44 instance */
106#define IP_FW_NAT44_XGETCONFIG 113 /* Get NAT44 instance config */
107#define IP_FW_NAT44_LIST_NAT 114 /* List all NAT44 instances */
108#define IP_FW_NAT44_XGETLOG 115 /* Get log from NAT44 instance */
109
110#define IP_FW_DUMP_SOPTCODES 116 /* Dump available sopts/versions */
111#define IP_FW_DUMP_SRVOBJECTS 117 /* Dump existing named objects */
112
113#define IP_FW_NAT64STL_CREATE 130 /* Create stateless NAT64 instance */
114#define IP_FW_NAT64STL_DESTROY 131 /* Destroy stateless NAT64 instance */
115#define IP_FW_NAT64STL_CONFIG 132 /* Modify stateless NAT64 instance */
116#define IP_FW_NAT64STL_LIST 133 /* List stateless NAT64 instances */
117#define IP_FW_NAT64STL_STATS 134 /* Get NAT64STL instance statistics */
118#define IP_FW_NAT64STL_RESET_STATS 135 /* Reset NAT64STL instance statistics */
119
120#define IP_FW_NAT64LSN_CREATE 140 /* Create stateful NAT64 instance */
121#define IP_FW_NAT64LSN_DESTROY 141 /* Destroy stateful NAT64 instance */
122#define IP_FW_NAT64LSN_CONFIG 142 /* Modify stateful NAT64 instance */
123#define IP_FW_NAT64LSN_LIST 143 /* List stateful NAT64 instances */
124#define IP_FW_NAT64LSN_STATS 144 /* Get NAT64LSN instance statistics */
125#define IP_FW_NAT64LSN_LIST_STATES 145 /* Get stateful NAT64 states */
126#define IP_FW_NAT64LSN_RESET_STATS 146 /* Reset NAT64LSN instance statistics */
127
128#define IP_FW_NPTV6_CREATE 150 /* Create NPTv6 instance */
129#define IP_FW_NPTV6_DESTROY 151 /* Destroy NPTv6 instance */
130#define IP_FW_NPTV6_CONFIG 152 /* Modify NPTv6 instance */
131#define IP_FW_NPTV6_LIST 153 /* List NPTv6 instances */
132#define IP_FW_NPTV6_STATS 154 /* Get NPTv6 instance statistics */
133#define IP_FW_NPTV6_RESET_STATS 155 /* Reset NPTv6 instance statistics */
134
135#define IP_FW_NAT64CLAT_CREATE 160 /* Create clat NAT64 instance */
136#define IP_FW_NAT64CLAT_DESTROY 161 /* Destroy clat NAT64 instance */
137#define IP_FW_NAT64CLAT_CONFIG 162 /* Modify clat NAT64 instance */
138#define IP_FW_NAT64CLAT_LIST 163 /* List clat NAT64 instances */
139#define IP_FW_NAT64CLAT_STATS 164 /* Get NAT64CLAT instance statistics */
140#define IP_FW_NAT64CLAT_RESET_STATS 165 /* Reset NAT64CLAT instance statistics */
141
142/*
143 * The kernel representation of ipfw rules is made of a list of
144 * 'instructions' (for all practical purposes equivalent to BPF
145 * instructions), which specify which fields of the packet
146 * (or its metadata) should be analysed.
147 *
148 * Each instruction is stored in a structure which begins with
149 * "ipfw_insn", and can contain extra fields depending on the
150 * instruction type (listed below).
151 * Note that the code is written so that individual instructions
152 * have a size which is a multiple of 32 bits. This means that, if
153 * such structures contain pointers or other 64-bit entities,
154 * (there is just one instance now) they may end up unaligned on
155 * 64-bit architectures, so the must be handled with care.
156 *
157 * "enum ipfw_opcodes" are the opcodes supported. We can have up
158 * to 256 different opcodes. When adding new opcodes, they should
159 * be appended to the end of the opcode list before O_LAST_OPCODE,
160 * this will prevent the ABI from being broken, otherwise users
161 * will have to recompile ipfw(8) when they update the kernel.
162 */
163
164enum ipfw_opcodes { /* arguments (4 byte each) */
165 O_NOP,
166
167 O_IP_SRC, /* u32 = IP */
168 O_IP_SRC_MASK, /* ip = IP/mask */
169 O_IP_SRC_ME, /* none */
170 O_IP_SRC_SET, /* u32=base, arg1=len, bitmap */
171
172 O_IP_DST, /* u32 = IP */
173 O_IP_DST_MASK, /* ip = IP/mask */
174 O_IP_DST_ME, /* none */
175 O_IP_DST_SET, /* u32=base, arg1=len, bitmap */
176
177 O_IP_SRCPORT, /* (n)port list:mask 4 byte ea */
178 O_IP_DSTPORT, /* (n)port list:mask 4 byte ea */
179 O_PROTO, /* arg1=protocol */
180
181 O_MACADDR2, /* 2 mac addr:mask */
182 O_MAC_TYPE, /* same as srcport */
183
184 O_LAYER2, /* none */
185 O_IN, /* none */
186 O_FRAG, /* none */
187
188 O_RECV, /* none */
189 O_XMIT, /* none */
190 O_VIA, /* none */
191
192 O_IPOPT, /* arg1 = 2*u8 bitmap */
193 O_IPLEN, /* arg1 = len */
194 O_IPID, /* arg1 = id */
195
196 O_IPTOS, /* arg1 = id */
197 O_IPPRECEDENCE, /* arg1 = precedence << 5 */
198 O_IPTTL, /* arg1 = TTL */
199
200 O_IPVER, /* arg1 = version */
201 O_UID, /* u32 = id */
202 O_GID, /* u32 = id */
203 O_ESTAB, /* none (tcp established) */
204 O_TCPFLAGS, /* arg1 = 2*u8 bitmap */
205 O_TCPWIN, /* arg1 = desired win */
206 O_TCPSEQ, /* u32 = desired seq. */
207 O_TCPACK, /* u32 = desired seq. */
208 O_ICMPTYPE, /* u32 = icmp bitmap */
209 O_TCPOPTS, /* arg1 = 2*u8 bitmap */
210
211 O_VERREVPATH, /* none */
212 O_VERSRCREACH, /* none */
213
214 O_PROBE_STATE, /* none */
215 O_KEEP_STATE, /* none */
216 O_LIMIT, /* ipfw_insn_limit */
217 O_LIMIT_PARENT, /* dyn_type, not an opcode. */
218
219 /*
220 * These are really 'actions'.
221 */
222
223 O_LOG, /* ipfw_insn_log */
224 O_PROB, /* u32 = match probability */
225
226 O_CHECK_STATE, /* none */
227 O_ACCEPT, /* none */
228 O_DENY, /* none */
229 O_REJECT, /* arg1=icmp arg (same as deny) */
230 O_COUNT, /* none */
231 O_SKIPTO, /* arg1=next rule number */
232 O_PIPE, /* arg1=pipe number */
233 O_QUEUE, /* arg1=queue number */
234 O_DIVERT, /* arg1=port number */
235 O_TEE, /* arg1=port number */
236 O_FORWARD_IP, /* fwd sockaddr */
237 O_FORWARD_MAC, /* fwd mac */
238 O_NAT, /* nope */
239 O_REASS, /* none */
240
241 /*
242 * More opcodes.
243 */
244 O_IPSEC, /* has ipsec history */
245 O_IP_SRC_LOOKUP, /* arg1=table number, u32=value */
246 O_IP_DST_LOOKUP, /* arg1=table number, u32=value */
247 O_ANTISPOOF, /* none */
248 O_JAIL, /* u32 = id */
249 O_ALTQ, /* u32 = altq classif. qid */
250 O_DIVERTED, /* arg1=bitmap (1:loop, 2:out) */
251 O_TCPDATALEN, /* arg1 = tcp data len */
252 O_IP6_SRC, /* address without mask */
253 O_IP6_SRC_ME, /* my addresses */
254 O_IP6_SRC_MASK, /* address with the mask */
255 O_IP6_DST,
256 O_IP6_DST_ME,
257 O_IP6_DST_MASK,
258 O_FLOW6ID, /* for flow id tag in the ipv6 pkt */
259 O_ICMP6TYPE, /* icmp6 packet type filtering */
260 O_EXT_HDR, /* filtering for ipv6 extension header */
261 O_IP6,
262
263 /*
264 * actions for ng_ipfw
265 */
266 O_NETGRAPH, /* send to ng_ipfw */
267 O_NGTEE, /* copy to ng_ipfw */
268
269 O_IP4,
270
271 O_UNREACH6, /* arg1=icmpv6 code arg (deny) */
272
273 O_TAG, /* arg1=tag number */
274 O_TAGGED, /* arg1=tag number */
275
276 O_SETFIB, /* arg1=FIB number */
277 O_FIB, /* arg1=FIB desired fib number */
278
279 O_SOCKARG, /* socket argument */
280
281 O_CALLRETURN, /* arg1=called rule number */
282
283 O_FORWARD_IP6, /* fwd sockaddr_in6 */
284
285 O_DSCP, /* 2 u32 = DSCP mask */
286 O_SETDSCP, /* arg1=DSCP value */
287 O_IP_FLOW_LOOKUP, /* arg1=table number, u32=value */
288
289 O_EXTERNAL_ACTION, /* arg1=id of external action handler */
290 O_EXTERNAL_INSTANCE, /* arg1=id of eaction handler instance */
291 O_EXTERNAL_DATA, /* variable length data */
292
293 O_SKIP_ACTION, /* none */
294 O_TCPMSS, /* arg1=MSS value */
295
296 O_MAC_SRC_LOOKUP, /* arg1=table number, u32=value */
297 O_MAC_DST_LOOKUP, /* arg1=table number, u32=value */
298
299 O_SETMARK, /* u32 = value */
300 O_MARK, /* 2 u32 = value, bitmask */
301
302 O_LAST_OPCODE /* not an opcode! */
303};
304
305/*
306 * Defines key types used by lookup instruction
307 */
308enum ipfw_table_lookup_type {
309 LOOKUP_DST_IP,
310 LOOKUP_SRC_IP,
311 LOOKUP_DST_PORT,
312 LOOKUP_SRC_PORT,
313 LOOKUP_UID,
314 LOOKUP_JAIL,
315 LOOKUP_DSCP,
316 LOOKUP_DST_MAC,
317 LOOKUP_SRC_MAC,
318 LOOKUP_MARK,
319};
320
321/*
322 * The extension header are filtered only for presence using a bit
323 * vector with a flag for each header.
324 */
325#define EXT_FRAGMENT 0x1
326#define EXT_HOPOPTS 0x2
327#define EXT_ROUTING 0x4
328#define EXT_AH 0x8
329#define EXT_ESP 0x10
330#define EXT_DSTOPTS 0x20
331#define EXT_RTHDR0 0x40
332#define EXT_RTHDR2 0x80
333
334/*
335 * Template for instructions.
336 *
337 * ipfw_insn is used for all instructions which require no operands,
338 * a single 16-bit value (arg1), or a couple of 8-bit values.
339 *
340 * For other instructions which require different/larger arguments
341 * we have derived structures, ipfw_insn_*.
342 *
343 * The size of the instruction (in 32-bit words) is in the low
344 * 6 bits of "len". The 2 remaining bits are used to implement
345 * NOT and OR on individual instructions. Given a type, you can
346 * compute the length to be put in "len" using F_INSN_SIZE(t)
347 *
348 * F_NOT negates the match result of the instruction.
349 *
350 * F_OR is used to build or blocks. By default, instructions
351 * are evaluated as part of a logical AND. An "or" block
352 * { X or Y or Z } contains F_OR set in all but the last
353 * instruction of the block. A match will cause the code
354 * to skip past the last instruction of the block.
355 *
356 * NOTA BENE: in a couple of places we assume that
357 * sizeof(ipfw_insn) == sizeof(u_int32_t)
358 * this needs to be fixed.
359 *
360 */
361typedef struct _ipfw_insn { /* template for instructions */
362 _Alignas(_Alignof(u_int32_t)) u_int8_t opcode;
363 u_int8_t len; /* number of 32-bit words */
364#define F_NOT 0x80
365#define F_OR 0x40
366#define F_LEN_MASK 0x3f
367#define F_LEN(cmd) ((cmd)->len & F_LEN_MASK)
368
369 u_int16_t arg1;
370} ipfw_insn;
371
372/*
373 * The F_INSN_SIZE(type) computes the size, in 4-byte words, of
374 * a given type.
375 */
376#define F_INSN_SIZE(t) ((sizeof (t))/sizeof(u_int32_t))
377
378/*
379 * This is used to store an array of 16-bit entries (ports etc.)
380 */
381typedef struct _ipfw_insn_u16 {
382 ipfw_insn o;
383 u_int16_t ports[2]; /* there may be more */
384} ipfw_insn_u16;
385
386/*
387 * This is used to store an array of 32-bit entries
388 * (uid, single IPv4 addresses etc.)
389 */
390typedef struct _ipfw_insn_u32 {
391 ipfw_insn o;
392 u_int32_t d[1]; /* one or more */
393} ipfw_insn_u32;
394
395/*
396 * This is used to store IP addr-mask pairs.
397 */
398typedef struct _ipfw_insn_ip {
399 ipfw_insn o;
400 struct in_addr addr;
401 struct in_addr mask;
402} ipfw_insn_ip;
403
404/*
405 * This is used to forward to a given address (ip).
406 */
407typedef struct _ipfw_insn_sa {
408 ipfw_insn o;
409 struct sockaddr_in sa;
410} ipfw_insn_sa;
411
412/*
413 * This is used to forward to a given address (ipv6).
414 */
415typedef struct _ipfw_insn_sa6 {
416 ipfw_insn o;
417 struct sockaddr_in6 sa;
418} ipfw_insn_sa6;
419
420/*
421 * This is used for MAC addr-mask pairs.
422 */
423typedef struct _ipfw_insn_mac {
424 ipfw_insn o;
425 u_char addr[12]; /* dst[6] + src[6] */
426 u_char mask[12]; /* dst[6] + src[6] */
427} ipfw_insn_mac;
428
429/*
430 * This is used for interface match rules (recv xx, xmit xx).
431 */
432typedef struct _ipfw_insn_if {
433 ipfw_insn o;
434 union {
435 struct in_addr ip;
436 int glob;
437 uint16_t kidx;
438 } p;
439 char name[IFNAMSIZ];
440} ipfw_insn_if;
441
442/*
443 * This is used for storing an altq queue id number.
444 */
445typedef struct _ipfw_insn_altq {
446 ipfw_insn o;
447 u_int32_t qid;
448} ipfw_insn_altq;
449
450/*
451 * This is used for limit rules.
452 */
453typedef struct _ipfw_insn_limit {
454 ipfw_insn o;
455 u_int8_t _pad;
456 u_int8_t limit_mask; /* combination of DYN_* below */
457#define DYN_SRC_ADDR 0x1
458#define DYN_SRC_PORT 0x2
459#define DYN_DST_ADDR 0x4
460#define DYN_DST_PORT 0x8
461
462 u_int16_t conn_limit;
463} ipfw_insn_limit;
464
465/*
466 * This is used for log instructions.
467 */
468typedef struct _ipfw_insn_log {
469 ipfw_insn o;
470 u_int32_t max_log; /* how many do we log -- 0 = all */
471 u_int32_t log_left; /* how many left to log */
472} ipfw_insn_log;
473
474/* Legacy NAT structures, compat only */
475#ifndef _KERNEL
476/*
477 * Data structures required by both ipfw(8) and ipfw(4) but not part of the
478 * management API are protected by IPFW_INTERNAL.
479 */
480#ifdef IPFW_INTERNAL
481/* Server pool support (LSNAT). */
482struct cfg_spool {
483 LIST_ENTRY(cfg_spool) _next; /* chain of spool instances */
484 struct in_addr addr;
485 u_short port;
486};
487#endif
488
489/* Redirect modes id. */
490#define REDIR_ADDR 0x01
491#define REDIR_PORT 0x02
492#define REDIR_PROTO 0x04
493
494#ifdef IPFW_INTERNAL
495/* Nat redirect configuration. */
496struct cfg_redir {
497 LIST_ENTRY(cfg_redir) _next; /* chain of redir instances */
498 u_int16_t mode; /* type of redirect mode */
499 struct in_addr laddr; /* local ip address */
500 struct in_addr paddr; /* public ip address */
501 struct in_addr raddr; /* remote ip address */
502 u_short lport; /* local port */
503 u_short pport; /* public port */
504 u_short rport; /* remote port */
505 u_short pport_cnt; /* number of public ports */
506 u_short rport_cnt; /* number of remote ports */
507 int proto; /* protocol: tcp/udp */
508 struct alias_link **alink;
509 /* num of entry in spool chain */
510 u_int16_t spool_cnt;
511 /* chain of spool instances */
512 LIST_HEAD(spool_chain, cfg_spool) spool_chain;
513};
514#endif
515
516#ifdef IPFW_INTERNAL
517/* Nat configuration data struct. */
518struct cfg_nat {
519 /* chain of nat instances */
520 LIST_ENTRY(cfg_nat) _next;
521 int id; /* nat id */
522 struct in_addr ip; /* nat ip address */
523 char if_name[IF_NAMESIZE]; /* interface name */
524 int mode; /* aliasing mode */
525 struct libalias *lib; /* libalias instance */
526 /* number of entry in spool chain */
527 int redir_cnt;
528 /* chain of redir instances */
529 LIST_HEAD(redir_chain, cfg_redir) redir_chain;
530};
531#endif
532
533#define SOF_NAT sizeof(struct cfg_nat)
534#define SOF_REDIR sizeof(struct cfg_redir)
535#define SOF_SPOOL sizeof(struct cfg_spool)
536
537#endif /* ifndef _KERNEL */
538
539struct nat44_cfg_spool {
540 struct in_addr addr;
541 uint16_t port;
542 uint16_t spare;
543};
544#define NAT44_REDIR_ADDR 0x01
545#define NAT44_REDIR_PORT 0x02
546#define NAT44_REDIR_PROTO 0x04
547
548/* Nat redirect configuration. */
549struct nat44_cfg_redir {
550 struct in_addr laddr; /* local ip address */
551 struct in_addr paddr; /* public ip address */
552 struct in_addr raddr; /* remote ip address */
553 uint16_t lport; /* local port */
554 uint16_t pport; /* public port */
555 uint16_t rport; /* remote port */
556 uint16_t pport_cnt; /* number of public ports */
557 uint16_t rport_cnt; /* number of remote ports */
558 uint16_t mode; /* type of redirect mode */
559 uint16_t spool_cnt; /* num of entry in spool chain */
560 uint16_t spare;
561 uint32_t proto; /* protocol: tcp/udp */
562};
563
564/* Nat configuration data struct. */
565struct nat44_cfg_nat {
566 char name[64]; /* nat name */
567 char if_name[64]; /* interface name */
568 uint32_t size; /* structure size incl. redirs */
569 struct in_addr ip; /* nat IPv4 address */
570 uint32_t mode; /* aliasing mode */
571 uint32_t redir_cnt; /* number of entry in spool chain */
572 u_short alias_port_lo; /* low range for port aliasing */
573 u_short alias_port_hi; /* high range for port aliasing */
574};
575
576/* Nat command. */
577typedef struct _ipfw_insn_nat {
578 ipfw_insn o;
579 struct cfg_nat *nat;
580} ipfw_insn_nat;
581
582/* Apply ipv6 mask on ipv6 addr */
583#define APPLY_MASK(addr,mask) do { \
584 (addr)->__u6_addr.__u6_addr32[0] &= (mask)->__u6_addr.__u6_addr32[0]; \
585 (addr)->__u6_addr.__u6_addr32[1] &= (mask)->__u6_addr.__u6_addr32[1]; \
586 (addr)->__u6_addr.__u6_addr32[2] &= (mask)->__u6_addr.__u6_addr32[2]; \
587 (addr)->__u6_addr.__u6_addr32[3] &= (mask)->__u6_addr.__u6_addr32[3]; \
588} while (0)
589
590/* Structure for ipv6 */
591typedef struct _ipfw_insn_ip6 {
592 ipfw_insn o;
593 struct in6_addr addr6;
594 struct in6_addr mask6;
595} ipfw_insn_ip6;
596
597/* Used to support icmp6 types */
598typedef struct _ipfw_insn_icmp6 {
599 ipfw_insn o;
600 uint32_t d[7]; /* XXX This number si related to the netinet/icmp6.h
601 * define ICMP6_MAXTYPE
602 * as follows: n = ICMP6_MAXTYPE/32 + 1
603 * Actually is 203
604 */
605} ipfw_insn_icmp6;
606
607/*
608 * Here we have the structure representing an ipfw rule.
609 *
610 * Layout:
611 * struct ip_fw_rule
612 * [ counter block, size = rule->cntr_len ]
613 * [ one or more instructions, size = rule->cmd_len * 4 ]
614 *
615 * It starts with a general area (with link fields).
616 * Counter block may be next (if rule->cntr_len > 0),
617 * followed by an array of one or more instructions, which the code
618 * accesses as an array of 32-bit values. rule->cmd_len represents
619 * the total instructions legth in u32 worrd, while act_ofs represents
620 * rule action offset in u32 words.
621 *
622 * When assembling instruction, remember the following:
623 *
624 * + if a rule has a "keep-state" (or "limit") option, then the
625 * first instruction (at r->cmd) MUST BE an O_PROBE_STATE
626 * + if a rule has a "log" option, then the first action
627 * (at ACTION_PTR(r)) MUST be O_LOG
628 * + if a rule has an "altq" option, it comes after "log"
629 * + if a rule has an O_TAG option, it comes after "log" and "altq"
630 *
631 *
632 * All structures (excluding instructions) are u64-aligned.
633 * Please keep this.
634 */
635
636struct ip_fw_rule {
637 uint16_t act_ofs; /* offset of action in 32-bit units */
638 uint16_t cmd_len; /* # of 32-bit words in cmd */
639 uint16_t spare;
640 uint8_t set; /* rule set (0..31) */
641 uint8_t flags; /* rule flags */
642 uint32_t rulenum; /* rule number */
643 uint32_t id; /* rule id */
644
645 ipfw_insn cmd[1]; /* storage for commands */
646};
647#define IPFW_RULE_NOOPT 0x01 /* Has no options in body */
648#define IPFW_RULE_JUSTOPTS 0x02 /* new format of rule body */
649
650/* Unaligned version */
651
652/* Base ipfw rule counter block. */
653struct ip_fw_bcounter {
654 uint16_t size; /* Size of counter block, bytes */
655 uint8_t flags; /* flags for given block */
656 uint8_t spare;
657 uint32_t timestamp; /* tv_sec of last match */
658 uint64_t pcnt; /* Packet counter */
659 uint64_t bcnt; /* Byte counter */
660};
661
662#ifndef _KERNEL
663/*
664 * Legacy rule format
665 */
666struct ip_fw {
667 struct ip_fw *x_next; /* linked list of rules */
668 struct ip_fw *next_rule; /* ptr to next [skipto] rule */
669 /* 'next_rule' is used to pass up 'set_disable' status */
670
671 uint16_t act_ofs; /* offset of action in 32-bit units */
672 uint16_t cmd_len; /* # of 32-bit words in cmd */
673 uint16_t rulenum; /* rule number */
674 uint8_t set; /* rule set (0..31) */
675 uint8_t _pad; /* padding */
676 uint32_t id; /* rule id */
677
678 /* These fields are present in all rules. */
679 uint64_t pcnt; /* Packet counter */
680 uint64_t bcnt; /* Byte counter */
681 uint32_t timestamp; /* tv_sec of last match */
682
683 ipfw_insn cmd[1]; /* storage for commands */
684};
685#endif
686
687#define ACTION_PTR(rule) \
688 (ipfw_insn *)( (u_int32_t *)((rule)->cmd) + ((rule)->act_ofs) )
689
690#define RULESIZE(rule) (sizeof(*(rule)) + (rule)->cmd_len * 4 - 4)
691
692#if 1 // should be moved to in.h
693/*
694 * This structure is used as a flow mask and a flow id for various
695 * parts of the code.
696 * addr_type is used in userland and kernel to mark the address type.
697 * fib is used in the kernel to record the fib in use.
698 * _flags is used in the kernel to store tcp flags for dynamic rules.
699 */
700struct ipfw_flow_id {
701 uint32_t dst_ip;
702 uint32_t src_ip;
703 uint16_t dst_port;
704 uint16_t src_port;
705 uint8_t fib; /* XXX: must be uint16_t */
706 uint8_t proto;
707 uint8_t _flags; /* protocol-specific flags */
708 uint8_t addr_type; /* 4=ip4, 6=ip6, 1=ether ? */
709 struct in6_addr dst_ip6;
710 struct in6_addr src_ip6;
711 uint32_t flow_id6;
712 uint32_t extra; /* queue/pipe or frag_id */
713};
714#endif
715
716#define IS_IP4_FLOW_ID(id) ((id)->addr_type == 4)
717#define IS_IP6_FLOW_ID(id) ((id)->addr_type == 6)
718
719/*
720 * Dynamic ipfw rule.
721 */
722typedef struct _ipfw_dyn_rule ipfw_dyn_rule;
723
724struct _ipfw_dyn_rule {
725 ipfw_dyn_rule *next; /* linked list of rules. */
726 struct ip_fw *rule; /* pointer to rule */
727 /* 'rule' is used to pass up the rule number (from the parent) */
728
729 ipfw_dyn_rule *parent; /* pointer to parent rule */
730 u_int64_t pcnt; /* packet match counter */
731 u_int64_t bcnt; /* byte match counter */
732 struct ipfw_flow_id id; /* (masked) flow id */
733 u_int32_t expire; /* expire time */
734 u_int32_t bucket; /* which bucket in hash table */
735 u_int32_t state; /* state of this rule (typically a
736 * combination of TCP flags)
737 */
738#define IPFW_DYN_ORPHANED 0x40000 /* state's parent rule was deleted */
739 u_int32_t ack_fwd; /* most recent ACKs in forward */
740 u_int32_t ack_rev; /* and reverse directions (used */
741 /* to generate keepalives) */
742 u_int16_t dyn_type; /* rule type */
743 u_int16_t count; /* refcount */
744 u_int16_t kidx; /* index of named object */
745} __packed __aligned(8);
746
747/*
748 * Definitions for IP option names.
749 */
750#define IP_FW_IPOPT_LSRR 0x01
751#define IP_FW_IPOPT_SSRR 0x02
752#define IP_FW_IPOPT_RR 0x04
753#define IP_FW_IPOPT_TS 0x08
754
755/*
756 * Definitions for TCP option names.
757 */
758#define IP_FW_TCPOPT_MSS 0x01
759#define IP_FW_TCPOPT_WINDOW 0x02
760#define IP_FW_TCPOPT_SACK 0x04
761#define IP_FW_TCPOPT_TS 0x08
762#define IP_FW_TCPOPT_CC 0x10
763
764#define ICMP_REJECT_RST 0x100 /* fake ICMP code (send a TCP RST) */
765#define ICMP6_UNREACH_RST 0x100 /* fake ICMPv6 code (send a TCP RST) */
766#define ICMP_REJECT_ABORT 0x101 /* fake ICMP code (send an SCTP ABORT) */
767#define ICMP6_UNREACH_ABORT 0x101 /* fake ICMPv6 code (send an SCTP ABORT) */
768
769/*
770 * These are used for lookup tables.
771 */
772
773#define IPFW_TABLE_ADDR 1 /* Table for holding IPv4/IPv6 prefixes */
774#define IPFW_TABLE_INTERFACE 2 /* Table for holding interface names */
775#define IPFW_TABLE_NUMBER 3 /* Table for holding ports/uid/gid/etc */
776#define IPFW_TABLE_FLOW 4 /* Table for holding flow data */
777#define IPFW_TABLE_MAC 5 /* Table for holding mac address prefixes */
778#define IPFW_TABLE_MAXTYPE 5 /* Maximum valid number */
779
780#define IPFW_TABLE_CIDR IPFW_TABLE_ADDR /* compat */
781
782/* Value types */
783#define IPFW_VTYPE_LEGACY 0xFFFFFFFF /* All data is filled in */
784#define IPFW_VTYPE_SKIPTO 0x00000001 /* skipto/call/callreturn */
785#define IPFW_VTYPE_PIPE 0x00000002 /* pipe/queue */
786#define IPFW_VTYPE_FIB 0x00000004 /* setfib */
787#define IPFW_VTYPE_NAT 0x00000008 /* nat */
788#define IPFW_VTYPE_DSCP 0x00000010 /* dscp */
789#define IPFW_VTYPE_TAG 0x00000020 /* tag/untag */
790#define IPFW_VTYPE_DIVERT 0x00000040 /* divert/tee */
791#define IPFW_VTYPE_NETGRAPH 0x00000080 /* netgraph/ngtee */
792#define IPFW_VTYPE_LIMIT 0x00000100 /* limit */
793#define IPFW_VTYPE_NH4 0x00000200 /* IPv4 nexthop */
794#define IPFW_VTYPE_NH6 0x00000400 /* IPv6 nexthop */
795#define IPFW_VTYPE_MARK 0x00000800 /* [fw]mark */
796
797/* MAC/InfiniBand/etc address length */
798#define IPFW_MAX_L2_ADDR_LEN 20
799
800typedef struct _ipfw_table_entry {
801 in_addr_t addr; /* network address */
802 u_int32_t value; /* value */
803 u_int16_t tbl; /* table number */
804 u_int8_t masklen; /* mask length */
805} ipfw_table_entry;
806
807typedef struct _ipfw_table_xentry {
808 uint16_t len; /* Total entry length */
809 uint8_t type; /* entry type */
810 uint8_t masklen; /* mask length */
811 uint16_t tbl; /* table number */
812 uint16_t flags; /* record flags */
813 uint32_t value; /* value */
814 union {
815 /* Longest field needs to be aligned by 4-byte boundary */
816 struct in6_addr addr6; /* IPv6 address */
817 char iface[IF_NAMESIZE]; /* interface name */
818 } k;
819} ipfw_table_xentry;
820#define IPFW_TCF_INET 0x01 /* CIDR flags: IPv4 record */
821
822typedef struct _ipfw_table {
823 u_int32_t size; /* size of entries in bytes */
824 u_int32_t cnt; /* # of entries */
825 u_int16_t tbl; /* table number */
826 ipfw_table_entry ent[0]; /* entries */
827} ipfw_table;
828
829typedef struct _ipfw_xtable {
830 ip_fw3_opheader opheader; /* IP_FW3 opcode */
831 uint32_t size; /* size of entries in bytes */
832 uint32_t cnt; /* # of entries */
833 uint16_t tbl; /* table number */
834 uint8_t type; /* table type */
835 ipfw_table_xentry xent[0]; /* entries */
836} ipfw_xtable;
837
838typedef struct _ipfw_obj_tlv {
839 uint16_t type; /* TLV type */
840 uint16_t flags; /* TLV-specific flags */
841 uint32_t length; /* Total length, aligned to u64 */
842} ipfw_obj_tlv;
843#define IPFW_TLV_TBL_NAME 1
844#define IPFW_TLV_TBLNAME_LIST 2
845#define IPFW_TLV_RULE_LIST 3
846#define IPFW_TLV_DYNSTATE_LIST 4
847#define IPFW_TLV_TBL_ENT 5
848#define IPFW_TLV_DYN_ENT 6
849#define IPFW_TLV_RULE_ENT 7
850#define IPFW_TLV_TBLENT_LIST 8
851#define IPFW_TLV_RANGE 9
852#define IPFW_TLV_EACTION 10
853#define IPFW_TLV_COUNTERS 11
854#define IPFW_TLV_OBJDATA 12
855#define IPFW_TLV_STATE_NAME 14
856
857#define IPFW_TLV_EACTION_BASE 1000
858#define IPFW_TLV_EACTION_NAME(arg) (IPFW_TLV_EACTION_BASE + (arg))
859
860typedef struct _ipfw_obj_data {
861 ipfw_obj_tlv head;
862 void *data[0];
863} ipfw_obj_data;
864
865/* Object name TLV */
866typedef struct _ipfw_obj_ntlv {
867 ipfw_obj_tlv head; /* TLV header */
868 uint16_t idx; /* Name index */
869 uint8_t set; /* set, if applicable */
870 uint8_t type; /* object type, if applicable */
871 uint32_t spare; /* unused */
872 char name[64]; /* Null-terminated name */
873} ipfw_obj_ntlv;
874
875/* IPv4/IPv6 L4 flow description */
876struct tflow_entry {
877 uint8_t af;
878 uint8_t proto;
879 uint16_t spare;
880 uint16_t sport;
881 uint16_t dport;
882 union {
883 struct {
884 struct in_addr sip;
885 struct in_addr dip;
886 } a4;
887 struct {
888 struct in6_addr sip6;
889 struct in6_addr dip6;
890 } a6;
891 } a;
892};
893
894/* 64-byte structure representing multi-field table value */
895typedef struct _ipfw_table_value {
896 uint32_t tag; /* O_TAG/O_TAGGED */
897 uint32_t pipe; /* O_PIPE/O_QUEUE */
898 uint16_t divert; /* O_DIVERT/O_TEE */
899 uint16_t skipto; /* skipto, CALLRET */
900 uint32_t netgraph; /* O_NETGRAPH/O_NGTEE */
901 uint32_t fib; /* O_SETFIB */
902 uint32_t nat; /* O_NAT */
903 uint32_t nh4;
904 uint8_t dscp;
905 uint8_t spare0;
906 uint16_t kidx; /* value kernel index */
907 struct in6_addr nh6;
908 uint32_t limit; /* O_LIMIT */
909 uint32_t zoneid; /* scope zone id for nh6 */
910 uint32_t mark; /* O_SETMARK/O_MARK */
911 uint32_t refcnt; /* XXX 64-bit in kernel */
912} ipfw_table_value;
913
914/* Table entry TLV */
915typedef struct _ipfw_obj_tentry {
916 ipfw_obj_tlv head; /* TLV header */
917 uint8_t subtype; /* subtype (IPv4,IPv6) */
918 uint8_t masklen; /* mask length */
919 uint8_t result; /* request result */
920 uint8_t spare0;
921 uint16_t idx; /* Table name index */
922 uint16_t spare1;
923 union {
924 /* Longest field needs to be aligned by 8-byte boundary */
925 struct in_addr addr; /* IPv4 address */
926 uint32_t key; /* uid/gid/port */
927 struct in6_addr addr6; /* IPv6 address */
928 char iface[IF_NAMESIZE]; /* interface name */
929 u_char mac[IPFW_MAX_L2_ADDR_LEN]; /* MAC address */
930 struct tflow_entry flow;
931 } k;
932 union {
933 ipfw_table_value value; /* value data */
934 uint32_t kidx; /* value kernel index */
935 } v;
936} ipfw_obj_tentry;
937#define IPFW_TF_UPDATE 0x01 /* Update record if exists */
938/* Container TLV */
939#define IPFW_CTF_ATOMIC 0x01 /* Perform atomic operation */
940/* Operation results */
941#define IPFW_TR_IGNORED 0 /* Entry was ignored (rollback) */
942#define IPFW_TR_ADDED 1 /* Entry was successfully added */
943#define IPFW_TR_UPDATED 2 /* Entry was successfully updated*/
944#define IPFW_TR_DELETED 3 /* Entry was successfully deleted*/
945#define IPFW_TR_LIMIT 4 /* Entry was ignored (limit) */
946#define IPFW_TR_NOTFOUND 5 /* Entry was not found */
947#define IPFW_TR_EXISTS 6 /* Entry already exists */
948#define IPFW_TR_ERROR 7 /* Request has failed (unknown) */
949
950typedef struct _ipfw_obj_dyntlv {
951 ipfw_obj_tlv head;
952 ipfw_dyn_rule state;
953} ipfw_obj_dyntlv;
954#define IPFW_DF_LAST 0x01 /* Last state in chain */
955
956/* Containter TLVs */
957typedef struct _ipfw_obj_ctlv {
958 ipfw_obj_tlv head; /* TLV header */
959 uint32_t count; /* Number of sub-TLVs */
960 uint16_t objsize; /* Single object size */
961 uint8_t version; /* TLV version */
962 uint8_t flags; /* TLV-specific flags */
963} ipfw_obj_ctlv;
964
965/* Range TLV */
966typedef struct _ipfw_range_tlv {
967 ipfw_obj_tlv head; /* TLV header */
968 uint32_t flags; /* Range flags */
969 uint16_t start_rule; /* Range start */
970 uint16_t end_rule; /* Range end */
971 uint32_t set; /* Range set to match */
972 uint32_t new_set; /* New set to move/swap to */
973} ipfw_range_tlv;
974#define IPFW_RCFLAG_RANGE 0x01 /* rule range is set */
975#define IPFW_RCFLAG_ALL 0x02 /* match ALL rules */
976#define IPFW_RCFLAG_SET 0x04 /* match rules in given set */
977#define IPFW_RCFLAG_DYNAMIC 0x08 /* match only dynamic states */
978/* User-settable flags */
979#define IPFW_RCFLAG_USER (IPFW_RCFLAG_RANGE | IPFW_RCFLAG_ALL | \
980 IPFW_RCFLAG_SET | IPFW_RCFLAG_DYNAMIC)
981/* Internally used flags */
982#define IPFW_RCFLAG_DEFAULT 0x0100 /* Do not skip default rule */
983
984typedef struct _ipfw_ta_tinfo {
985 uint32_t flags; /* Format flags */
986 uint32_t spare;
987 uint8_t taclass4; /* algorithm class */
988 uint8_t spare4;
989 uint16_t itemsize4; /* item size in runtime */
990 uint32_t size4; /* runtime structure size */
991 uint32_t count4; /* number of items in runtime */
992 uint8_t taclass6; /* algorithm class */
993 uint8_t spare6;
994 uint16_t itemsize6; /* item size in runtime */
995 uint32_t size6; /* runtime structure size */
996 uint32_t count6; /* number of items in runtime */
997} ipfw_ta_tinfo;
998#define IPFW_TACLASS_HASH 1 /* algo is based on hash */
999#define IPFW_TACLASS_ARRAY 2 /* algo is based on array */
1000#define IPFW_TACLASS_RADIX 3 /* algo is based on radix tree */
1001
1002#define IPFW_TATFLAGS_DATA 0x0001 /* Has data filled in */
1003#define IPFW_TATFLAGS_AFDATA 0x0002 /* Separate data per AF */
1004#define IPFW_TATFLAGS_AFITEM 0x0004 /* diff. items per AF */
1005
1006typedef struct _ipfw_xtable_info {
1007 uint8_t type; /* table type (addr,iface,..) */
1008 uint8_t tflags; /* type flags */
1009 uint16_t mflags; /* modification flags */
1010 uint16_t flags; /* generic table flags */
1011 uint16_t spare[3];
1012 uint32_t vmask; /* bitmask with value types */
1013 uint32_t set; /* set table is in */
1014 uint32_t kidx; /* kernel index */
1015 uint32_t refcnt; /* number of references */
1016 uint32_t count; /* Number of records */
1017 uint32_t size; /* Total size of records(export)*/
1018 uint32_t limit; /* Max number of records */
1019 char tablename[64]; /* table name */
1020 char algoname[64]; /* algorithm name */
1021 ipfw_ta_tinfo ta_info; /* additional algo stats */
1022} ipfw_xtable_info;
1023/* Generic table flags */
1024#define IPFW_TGFLAGS_LOCKED 0x01 /* Tables is locked from changes*/
1025/* Table type-specific flags */
1026#define IPFW_TFFLAG_SRCIP 0x01
1027#define IPFW_TFFLAG_DSTIP 0x02
1028#define IPFW_TFFLAG_SRCPORT 0x04
1029#define IPFW_TFFLAG_DSTPORT 0x08
1030#define IPFW_TFFLAG_PROTO 0x10
1031/* Table modification flags */
1032#define IPFW_TMFLAGS_LIMIT 0x0002 /* Change limit value */
1033#define IPFW_TMFLAGS_LOCK 0x0004 /* Change table lock state */
1034
1035typedef struct _ipfw_iface_info {
1036 char ifname[64]; /* interface name */
1037 uint32_t ifindex; /* interface index */
1038 uint32_t flags; /* flags */
1039 uint32_t refcnt; /* number of references */
1040 uint32_t gencnt; /* number of changes */
1041 uint64_t spare;
1042} ipfw_iface_info;
1043#define IPFW_IFFLAG_RESOLVED 0x01 /* Interface exists */
1044
1045typedef struct _ipfw_ta_info {
1046 char algoname[64]; /* algorithm name */
1047 uint32_t type; /* lookup type */
1048 uint32_t flags;
1049 uint32_t refcnt;
1050 uint32_t spare0;
1051 uint64_t spare1;
1052} ipfw_ta_info;
1053
1054typedef struct _ipfw_obj_header {
1055 ip_fw3_opheader opheader; /* IP_FW3 opcode */
1056 uint32_t spare;
1057 uint16_t idx; /* object name index */
1058 uint8_t objtype; /* object type */
1059 uint8_t objsubtype; /* object subtype */
1060 ipfw_obj_ntlv ntlv; /* object name tlv */
1061} ipfw_obj_header;
1062
1063typedef struct _ipfw_obj_lheader {
1064 ip_fw3_opheader opheader; /* IP_FW3 opcode */
1065 uint32_t set_mask; /* disabled set mask */
1066 uint32_t count; /* Total objects count */
1067 uint32_t size; /* Total size (incl. header) */
1068 uint32_t objsize; /* Size of one object */
1069} ipfw_obj_lheader;
1070
1071#define IPFW_CFG_GET_STATIC 0x01
1072#define IPFW_CFG_GET_STATES 0x02
1073#define IPFW_CFG_GET_COUNTERS 0x04
1074typedef struct _ipfw_cfg_lheader {
1075 ip_fw3_opheader opheader; /* IP_FW3 opcode */
1076 uint32_t set_mask; /* enabled set mask */
1077 uint32_t spare;
1078 uint32_t flags; /* Request flags */
1079 uint32_t size; /* neded buffer size */
1080 uint32_t start_rule;
1081 uint32_t end_rule;
1082} ipfw_cfg_lheader;
1083
1084typedef struct _ipfw_range_header {
1085 ip_fw3_opheader opheader; /* IP_FW3 opcode */
1086 ipfw_range_tlv range;
1087} ipfw_range_header;
1088
1089typedef struct _ipfw_sopt_info {
1090 uint16_t opcode;
1091 uint8_t version;
1092 uint8_t dir;
1093 uint8_t spare;
1094 uint64_t refcnt;
1095} ipfw_sopt_info;
1096
1097#endif /* _IPFW2_H */