master
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2/*
   3 * Performance events:
   4 *
   5 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
   6 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
   7 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
   8 *
   9 * Data type definitions, declarations, prototypes.
  10 *
  11 *    Started by: Thomas Gleixner and Ingo Molnar
  12 *
  13 * For licencing details see kernel-base/COPYING
  14 */
  15#ifndef _LINUX_PERF_EVENT_H
  16#define _LINUX_PERF_EVENT_H
  17
  18#include <linux/types.h>
  19#include <linux/ioctl.h>
  20#include <asm/byteorder.h>
  21
  22/*
  23 * User-space ABI bits:
  24 */
  25
  26/*
  27 * attr.type
  28 */
  29enum perf_type_id {
  30	PERF_TYPE_HARDWARE			= 0,
  31	PERF_TYPE_SOFTWARE			= 1,
  32	PERF_TYPE_TRACEPOINT			= 2,
  33	PERF_TYPE_HW_CACHE			= 3,
  34	PERF_TYPE_RAW				= 4,
  35	PERF_TYPE_BREAKPOINT			= 5,
  36
  37	PERF_TYPE_MAX,				/* non-ABI */
  38};
  39
  40/*
  41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
  42 *
  43 * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
  44 *					AA: hardware event ID
  45 *					EEEEEEEE: PMU type ID
  46 *
  47 * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
  48 *					BB: hardware cache ID
  49 *					CC: hardware cache op ID
  50 *					DD: hardware cache op result ID
  51 *					EEEEEEEE: PMU type ID
  52 *
  53 * If the PMU type ID is 0, PERF_TYPE_RAW will be applied.
  54 */
  55#define PERF_PMU_TYPE_SHIFT			32
  56#define PERF_HW_EVENT_MASK			0xffffffff
  57
  58/*
  59 * Generalized performance event event_id types, used by the
  60 * attr.event_id parameter of the sys_perf_event_open()
  61 * syscall:
  62 */
  63enum perf_hw_id {
  64	/*
  65	 * Common hardware events, generalized by the kernel:
  66	 */
  67	PERF_COUNT_HW_CPU_CYCLES		= 0,
  68	PERF_COUNT_HW_INSTRUCTIONS		= 1,
  69	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
  70	PERF_COUNT_HW_CACHE_MISSES		= 3,
  71	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
  72	PERF_COUNT_HW_BRANCH_MISSES		= 5,
  73	PERF_COUNT_HW_BUS_CYCLES		= 6,
  74	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
  75	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
  76	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
  77
  78	PERF_COUNT_HW_MAX,			/* non-ABI */
  79};
  80
  81/*
  82 * Generalized hardware cache events:
  83 *
  84 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
  85 *       { read, write, prefetch } x
  86 *       { accesses, misses }
  87 */
  88enum perf_hw_cache_id {
  89	PERF_COUNT_HW_CACHE_L1D			= 0,
  90	PERF_COUNT_HW_CACHE_L1I			= 1,
  91	PERF_COUNT_HW_CACHE_LL			= 2,
  92	PERF_COUNT_HW_CACHE_DTLB		= 3,
  93	PERF_COUNT_HW_CACHE_ITLB		= 4,
  94	PERF_COUNT_HW_CACHE_BPU			= 5,
  95	PERF_COUNT_HW_CACHE_NODE		= 6,
  96
  97	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
  98};
  99
 100enum perf_hw_cache_op_id {
 101	PERF_COUNT_HW_CACHE_OP_READ		= 0,
 102	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
 103	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
 104
 105	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
 106};
 107
 108enum perf_hw_cache_op_result_id {
 109	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
 110	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
 111
 112	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
 113};
 114
 115/*
 116 * Special "software" events provided by the kernel, even if the hardware
 117 * does not support performance events. These events measure various
 118 * physical and SW events of the kernel (and allow the profiling of them as
 119 * well):
 120 */
 121enum perf_sw_ids {
 122	PERF_COUNT_SW_CPU_CLOCK			= 0,
 123	PERF_COUNT_SW_TASK_CLOCK		= 1,
 124	PERF_COUNT_SW_PAGE_FAULTS		= 2,
 125	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
 126	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
 127	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
 128	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
 129	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
 130	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
 131	PERF_COUNT_SW_DUMMY			= 9,
 132	PERF_COUNT_SW_BPF_OUTPUT		= 10,
 133	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
 134
 135	PERF_COUNT_SW_MAX,			/* non-ABI */
 136};
 137
 138/*
 139 * Bits that can be set in attr.sample_type to request information
 140 * in the overflow packets.
 141 */
 142enum perf_event_sample_format {
 143	PERF_SAMPLE_IP				= 1U << 0,
 144	PERF_SAMPLE_TID				= 1U << 1,
 145	PERF_SAMPLE_TIME			= 1U << 2,
 146	PERF_SAMPLE_ADDR			= 1U << 3,
 147	PERF_SAMPLE_READ			= 1U << 4,
 148	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
 149	PERF_SAMPLE_ID				= 1U << 6,
 150	PERF_SAMPLE_CPU				= 1U << 7,
 151	PERF_SAMPLE_PERIOD			= 1U << 8,
 152	PERF_SAMPLE_STREAM_ID			= 1U << 9,
 153	PERF_SAMPLE_RAW				= 1U << 10,
 154	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
 155	PERF_SAMPLE_REGS_USER			= 1U << 12,
 156	PERF_SAMPLE_STACK_USER			= 1U << 13,
 157	PERF_SAMPLE_WEIGHT			= 1U << 14,
 158	PERF_SAMPLE_DATA_SRC			= 1U << 15,
 159	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
 160	PERF_SAMPLE_TRANSACTION			= 1U << 17,
 161	PERF_SAMPLE_REGS_INTR			= 1U << 18,
 162	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
 163	PERF_SAMPLE_AUX				= 1U << 20,
 164	PERF_SAMPLE_CGROUP			= 1U << 21,
 165	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
 166	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
 167	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
 168
 169	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
 170};
 171
 172#define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
 173
 174/*
 175 * Values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set.
 176 *
 177 * If the user does not pass priv level information via branch_sample_type,
 178 * the kernel uses the event's priv level. Branch and event priv levels do
 179 * not have to match. Branch priv level is checked for permissions.
 180 *
 181 * The branch types can be combined, however BRANCH_ANY covers all types
 182 * of branches and therefore it supersedes all the other types.
 183 */
 184enum perf_branch_sample_type_shift {
 185	PERF_SAMPLE_BRANCH_USER_SHIFT		=  0, /* user branches */
 186	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		=  1, /* kernel branches */
 187	PERF_SAMPLE_BRANCH_HV_SHIFT		=  2, /* hypervisor branches */
 188
 189	PERF_SAMPLE_BRANCH_ANY_SHIFT		=  3, /* any branch types */
 190	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	=  4, /* any call branch */
 191	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	=  5, /* any return branch */
 192	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	=  6, /* indirect calls */
 193	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	=  7, /* transaction aborts */
 194	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		=  8, /* in transaction */
 195	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		=  9, /* not in transaction */
 196	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
 197
 198	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* CALL/RET stack */
 199	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
 200	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
 201
 202	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
 203	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
 204
 205	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
 206
 207	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
 208
 209	PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT	= 18, /* save privilege mode */
 210
 211	PERF_SAMPLE_BRANCH_COUNTERS_SHIFT	= 19, /* save occurrences of events on a branch */
 212
 213	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
 214};
 215
 216enum perf_branch_sample_type {
 217	PERF_SAMPLE_BRANCH_USER			= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
 218	PERF_SAMPLE_BRANCH_KERNEL		= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
 219	PERF_SAMPLE_BRANCH_HV			= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
 220
 221	PERF_SAMPLE_BRANCH_ANY			= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
 222	PERF_SAMPLE_BRANCH_ANY_CALL		= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
 223	PERF_SAMPLE_BRANCH_ANY_RETURN		= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
 224	PERF_SAMPLE_BRANCH_IND_CALL		= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
 225	PERF_SAMPLE_BRANCH_ABORT_TX		= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
 226	PERF_SAMPLE_BRANCH_IN_TX		= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
 227	PERF_SAMPLE_BRANCH_NO_TX		= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
 228	PERF_SAMPLE_BRANCH_COND			= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
 229
 230	PERF_SAMPLE_BRANCH_CALL_STACK		= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
 231	PERF_SAMPLE_BRANCH_IND_JUMP		= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
 232	PERF_SAMPLE_BRANCH_CALL			= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
 233
 234	PERF_SAMPLE_BRANCH_NO_FLAGS		= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
 235	PERF_SAMPLE_BRANCH_NO_CYCLES		= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
 236
 237	PERF_SAMPLE_BRANCH_TYPE_SAVE		= 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
 238
 239	PERF_SAMPLE_BRANCH_HW_INDEX		= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
 240
 241	PERF_SAMPLE_BRANCH_PRIV_SAVE		= 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
 242
 243	PERF_SAMPLE_BRANCH_COUNTERS		= 1U << PERF_SAMPLE_BRANCH_COUNTERS_SHIFT,
 244
 245	PERF_SAMPLE_BRANCH_MAX			= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
 246};
 247
 248/*
 249 * Common control flow change classifications:
 250 */
 251enum {
 252	PERF_BR_UNKNOWN				=  0,	/* Unknown */
 253	PERF_BR_COND				=  1,	/* Conditional */
 254	PERF_BR_UNCOND				=  2,	/* Unconditional  */
 255	PERF_BR_IND				=  3,	/* Indirect */
 256	PERF_BR_CALL				=  4,	/* Function call */
 257	PERF_BR_IND_CALL			=  5,	/* Indirect function call */
 258	PERF_BR_RET				=  6,	/* Function return */
 259	PERF_BR_SYSCALL				=  7,	/* Syscall */
 260	PERF_BR_SYSRET				=  8,	/* Syscall return */
 261	PERF_BR_COND_CALL			=  9,	/* Conditional function call */
 262	PERF_BR_COND_RET			= 10,	/* Conditional function return */
 263	PERF_BR_ERET				= 11,	/* Exception return */
 264	PERF_BR_IRQ				= 12,	/* IRQ */
 265	PERF_BR_SERROR				= 13,	/* System error */
 266	PERF_BR_NO_TX				= 14,	/* Not in transaction */
 267	PERF_BR_EXTEND_ABI			= 15,	/* Extend ABI */
 268	PERF_BR_MAX,
 269};
 270
 271/*
 272 * Common branch speculation outcome classifications:
 273 */
 274enum {
 275	PERF_BR_SPEC_NA				= 0,	/* Not available */
 276	PERF_BR_SPEC_WRONG_PATH			= 1,	/* Speculative but on wrong path */
 277	PERF_BR_NON_SPEC_CORRECT_PATH		= 2,	/* Non-speculative but on correct path */
 278	PERF_BR_SPEC_CORRECT_PATH		= 3,	/* Speculative and on correct path */
 279	PERF_BR_SPEC_MAX,
 280};
 281
 282enum {
 283	PERF_BR_NEW_FAULT_ALGN			= 0,    /* Alignment fault */
 284	PERF_BR_NEW_FAULT_DATA			= 1,    /* Data fault */
 285	PERF_BR_NEW_FAULT_INST			= 2,    /* Inst fault */
 286	PERF_BR_NEW_ARCH_1			= 3,    /* Architecture specific */
 287	PERF_BR_NEW_ARCH_2			= 4,    /* Architecture specific */
 288	PERF_BR_NEW_ARCH_3			= 5,    /* Architecture specific */
 289	PERF_BR_NEW_ARCH_4			= 6,    /* Architecture specific */
 290	PERF_BR_NEW_ARCH_5			= 7,    /* Architecture specific */
 291	PERF_BR_NEW_MAX,
 292};
 293
 294enum {
 295	PERF_BR_PRIV_UNKNOWN			= 0,
 296	PERF_BR_PRIV_USER			= 1,
 297	PERF_BR_PRIV_KERNEL			= 2,
 298	PERF_BR_PRIV_HV				= 3,
 299};
 300
 301#define PERF_BR_ARM64_FIQ			PERF_BR_NEW_ARCH_1
 302#define PERF_BR_ARM64_DEBUG_HALT		PERF_BR_NEW_ARCH_2
 303#define PERF_BR_ARM64_DEBUG_EXIT		PERF_BR_NEW_ARCH_3
 304#define PERF_BR_ARM64_DEBUG_INST		PERF_BR_NEW_ARCH_4
 305#define PERF_BR_ARM64_DEBUG_DATA		PERF_BR_NEW_ARCH_5
 306
 307#define PERF_SAMPLE_BRANCH_PLM_ALL \
 308	(PERF_SAMPLE_BRANCH_USER|\
 309	 PERF_SAMPLE_BRANCH_KERNEL|\
 310	 PERF_SAMPLE_BRANCH_HV)
 311
 312/*
 313 * Values to determine ABI of the registers dump.
 314 */
 315enum perf_sample_regs_abi {
 316	PERF_SAMPLE_REGS_ABI_NONE		= 0,
 317	PERF_SAMPLE_REGS_ABI_32			= 1,
 318	PERF_SAMPLE_REGS_ABI_64			= 2,
 319};
 320
 321/*
 322 * Values for the memory transaction event qualifier, mostly for
 323 * abort events. Multiple bits can be set.
 324 */
 325enum {
 326	PERF_TXN_ELISION			= (1 << 0), /* From elision */
 327	PERF_TXN_TRANSACTION			= (1 << 1), /* From transaction */
 328	PERF_TXN_SYNC				= (1 << 2), /* Instruction is related */
 329	PERF_TXN_ASYNC				= (1 << 3), /* Instruction is not related */
 330	PERF_TXN_RETRY				= (1 << 4), /* Retry possible */
 331	PERF_TXN_CONFLICT			= (1 << 5), /* Conflict abort */
 332	PERF_TXN_CAPACITY_WRITE			= (1 << 6), /* Capacity write abort */
 333	PERF_TXN_CAPACITY_READ			= (1 << 7), /* Capacity read abort */
 334
 335	PERF_TXN_MAX				= (1 << 8), /* non-ABI */
 336
 337	/* Bits 32..63 are reserved for the abort code */
 338
 339	PERF_TXN_ABORT_MASK			= (0xffffffffULL << 32),
 340	PERF_TXN_ABORT_SHIFT			= 32,
 341};
 342
 343/*
 344 * The format of the data returned by read() on a perf event fd,
 345 * as specified by attr.read_format:
 346 *
 347 * struct read_format {
 348 *	{ u64		value;
 349 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 350 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 351 *	  { u64		id;           } && PERF_FORMAT_ID
 352 *	  { u64		lost;         } && PERF_FORMAT_LOST
 353 *	} && !PERF_FORMAT_GROUP
 354 *
 355 *	{ u64		nr;
 356 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
 357 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
 358 *	  { u64		value;
 359 *	    { u64	id;           } && PERF_FORMAT_ID
 360 *	    { u64	lost;         } && PERF_FORMAT_LOST
 361 *	  }		cntr[nr];
 362 *	} && PERF_FORMAT_GROUP
 363 * };
 364 */
 365enum perf_event_read_format {
 366	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
 367	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
 368	PERF_FORMAT_ID				= 1U << 2,
 369	PERF_FORMAT_GROUP			= 1U << 3,
 370	PERF_FORMAT_LOST			= 1U << 4,
 371
 372	PERF_FORMAT_MAX = 1U << 5,		/* non-ABI */
 373};
 374
 375#define PERF_ATTR_SIZE_VER0			 64	/* Size of first published 'struct perf_event_attr' */
 376#define PERF_ATTR_SIZE_VER1			 72	/* Add: config2 */
 377#define PERF_ATTR_SIZE_VER2			 80	/* Add: branch_sample_type */
 378#define PERF_ATTR_SIZE_VER3			 96	/* Add: sample_regs_user */
 379							/* Add: sample_stack_user */
 380#define PERF_ATTR_SIZE_VER4			104	/* Add: sample_regs_intr */
 381#define PERF_ATTR_SIZE_VER5			112	/* Add: aux_watermark */
 382#define PERF_ATTR_SIZE_VER6			120	/* Add: aux_sample_size */
 383#define PERF_ATTR_SIZE_VER7			128	/* Add: sig_data */
 384#define PERF_ATTR_SIZE_VER8			136	/* Add: config3 */
 385
 386/*
 387 * 'struct perf_event_attr' contains various attributes that define
 388 * a performance event - most of them hardware related configuration
 389 * details, but also a lot of behavioral switches and values implemented
 390 * by the kernel.
 391 */
 392struct perf_event_attr {
 393
 394	/*
 395	 * Major type: hardware/software/tracepoint/etc.
 396	 */
 397	__u32			type;
 398
 399	/*
 400	 * Size of the attr structure, for forward/backwards compatibility.
 401	 */
 402	__u32			size;
 403
 404	/*
 405	 * Type specific configuration information.
 406	 */
 407	__u64			config;
 408
 409	union {
 410		__u64		sample_period;
 411		__u64		sample_freq;
 412	};
 413
 414	__u64			sample_type;
 415	__u64			read_format;
 416
 417	__u64			disabled       :  1, /* off by default        */
 418				inherit	       :  1, /* children inherit it   */
 419				pinned	       :  1, /* must always be on PMU */
 420				exclusive      :  1, /* only group on PMU     */
 421				exclude_user   :  1, /* don't count user      */
 422				exclude_kernel :  1, /* ditto kernel          */
 423				exclude_hv     :  1, /* ditto hypervisor      */
 424				exclude_idle   :  1, /* don't count when idle */
 425				mmap           :  1, /* include mmap data     */
 426				comm	       :  1, /* include comm data     */
 427				freq           :  1, /* use freq, not period  */
 428				inherit_stat   :  1, /* per task counts       */
 429				enable_on_exec :  1, /* next exec enables     */
 430				task           :  1, /* trace fork/exit       */
 431				watermark      :  1, /* wakeup_watermark      */
 432				/*
 433				 * precise_ip:
 434				 *
 435				 *  0 - SAMPLE_IP can have arbitrary skid
 436				 *  1 - SAMPLE_IP must have constant skid
 437				 *  2 - SAMPLE_IP requested to have 0 skid
 438				 *  3 - SAMPLE_IP must have 0 skid
 439				 *
 440				 *  See also PERF_RECORD_MISC_EXACT_IP
 441				 */
 442				precise_ip     :  2, /* skid constraint       */
 443				mmap_data      :  1, /* non-exec mmap data    */
 444				sample_id_all  :  1, /* sample_type all events */
 445
 446				exclude_host   :  1, /* don't count in host   */
 447				exclude_guest  :  1, /* don't count in guest  */
 448
 449				exclude_callchain_kernel : 1, /* exclude kernel callchains */
 450				exclude_callchain_user   : 1, /* exclude user callchains */
 451				mmap2          :  1, /* include mmap with inode data     */
 452				comm_exec      :  1, /* flag comm events that are due to an exec */
 453				use_clockid    :  1, /* use @clockid for time fields */
 454				context_switch :  1, /* context switch data */
 455				write_backward :  1, /* write ring buffer from end to beginning */
 456				namespaces     :  1, /* include namespaces data */
 457				ksymbol        :  1, /* include ksymbol events */
 458				bpf_event      :  1, /* include BPF events */
 459				aux_output     :  1, /* generate AUX records instead of events */
 460				cgroup         :  1, /* include cgroup events */
 461				text_poke      :  1, /* include text poke events */
 462				build_id       :  1, /* use build ID in mmap2 events */
 463				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
 464				remove_on_exec :  1, /* event is removed from task on exec */
 465				sigtrap        :  1, /* send synchronous SIGTRAP on event */
 466				__reserved_1   : 26;
 467
 468	union {
 469		__u32		wakeup_events;	  /* wake up every n events */
 470		__u32		wakeup_watermark; /* bytes before wakeup   */
 471	};
 472
 473	__u32			bp_type;
 474	union {
 475		__u64		bp_addr;
 476		__u64		kprobe_func; /* for perf_kprobe */
 477		__u64		uprobe_path; /* for perf_uprobe */
 478		__u64		config1;     /* extension of config */
 479	};
 480	union {
 481		__u64		bp_len;
 482		__u64		kprobe_addr;  /* when kprobe_func == NULL */
 483		__u64		probe_offset; /* for perf_[k,u]probe */
 484		__u64		config2;      /* extension of config1 */
 485	};
 486	__u64	branch_sample_type; /* enum perf_branch_sample_type */
 487
 488	/*
 489	 * Defines set of user regs to dump on samples.
 490	 * See asm/perf_regs.h for details.
 491	 */
 492	__u64	sample_regs_user;
 493
 494	/*
 495	 * Defines size of the user stack to dump on samples.
 496	 */
 497	__u32	sample_stack_user;
 498
 499	__s32	clockid;
 500	/*
 501	 * Defines set of regs to dump for each sample
 502	 * state captured on:
 503	 *  - precise = 0: PMU interrupt
 504	 *  - precise > 0: sampled instruction
 505	 *
 506	 * See asm/perf_regs.h for details.
 507	 */
 508	__u64	sample_regs_intr;
 509
 510	/*
 511	 * Wakeup watermark for AUX area
 512	 */
 513	__u32	aux_watermark;
 514
 515	/*
 516	 * Max number of frame pointers in a callchain, should be
 517	 * lower than /proc/sys/kernel/perf_event_max_stack.
 518	 *
 519	 * Max number of entries of branch stack should be lower
 520	 * than the hardware limit.
 521	 */
 522	__u16	sample_max_stack;
 523
 524	__u16	__reserved_2;
 525	__u32	aux_sample_size;
 526
 527	union {
 528		__u32	aux_action;
 529		struct {
 530			__u32	aux_start_paused :  1, /* start AUX area tracing paused */
 531				aux_pause        :  1, /* on overflow, pause AUX area tracing */
 532				aux_resume       :  1, /* on overflow, resume AUX area tracing */
 533				__reserved_3     : 29;
 534		};
 535	};
 536
 537	/*
 538	 * User provided data if sigtrap=1, passed back to user via
 539	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
 540	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
 541	 * truncated accordingly on 32 bit architectures.
 542	 */
 543	__u64	sig_data;
 544
 545	__u64	config3; /* extension of config2 */
 546};
 547
 548/*
 549 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
 550 * to query BPF programs attached to the same perf tracepoint
 551 * as the given perf event.
 552 */
 553struct perf_event_query_bpf {
 554	/*
 555	 * The below ids array length
 556	 */
 557	__u32	ids_len;
 558	/*
 559	 * Set by the kernel to indicate the number of
 560	 * available programs
 561	 */
 562	__u32	prog_cnt;
 563	/*
 564	 * User provided buffer to store program ids
 565	 */
 566	__u32	ids[];
 567};
 568
 569/*
 570 * Ioctls that can be done on a perf event fd:
 571 */
 572#define PERF_EVENT_IOC_ENABLE			_IO  ('$', 0)
 573#define PERF_EVENT_IOC_DISABLE			_IO  ('$', 1)
 574#define PERF_EVENT_IOC_REFRESH			_IO  ('$', 2)
 575#define PERF_EVENT_IOC_RESET			_IO  ('$', 3)
 576#define PERF_EVENT_IOC_PERIOD			_IOW ('$', 4, __u64)
 577#define PERF_EVENT_IOC_SET_OUTPUT		_IO  ('$', 5)
 578#define PERF_EVENT_IOC_SET_FILTER		_IOW ('$', 6, char *)
 579#define PERF_EVENT_IOC_ID			_IOR ('$', 7, __u64 *)
 580#define PERF_EVENT_IOC_SET_BPF			_IOW ('$', 8, __u32)
 581#define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW ('$', 9, __u32)
 582#define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
 583#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW ('$', 11, struct perf_event_attr *)
 584
 585enum perf_event_ioc_flags {
 586	PERF_IOC_FLAG_GROUP			= 1U << 0,
 587};
 588
 589/*
 590 * Structure of the page that can be mapped via mmap
 591 */
 592struct perf_event_mmap_page {
 593	__u32	version;		/* version number of this structure */
 594	__u32	compat_version;		/* lowest version this is compat with */
 595
 596	/*
 597	 * Bits needed to read the HW events in user-space.
 598	 *
 599	 *   u32 seq, time_mult, time_shift, index, width;
 600	 *   u64 count, enabled, running;
 601	 *   u64 cyc, time_offset;
 602	 *   s64 pmc = 0;
 603	 *
 604	 *   do {
 605	 *     seq = pc->lock;
 606	 *     barrier()
 607	 *
 608	 *     enabled = pc->time_enabled;
 609	 *     running = pc->time_running;
 610	 *
 611	 *     if (pc->cap_usr_time && enabled != running) {
 612	 *       cyc = rdtsc();
 613	 *       time_offset = pc->time_offset;
 614	 *       time_mult   = pc->time_mult;
 615	 *       time_shift  = pc->time_shift;
 616	 *     }
 617	 *
 618	 *     index = pc->index;
 619	 *     count = pc->offset;
 620	 *     if (pc->cap_user_rdpmc && index) {
 621	 *       width = pc->pmc_width;
 622	 *       pmc = rdpmc(index - 1);
 623	 *     }
 624	 *
 625	 *     barrier();
 626	 *   } while (pc->lock != seq);
 627	 *
 628	 * NOTE: for obvious reason this only works on self-monitoring
 629	 *       processes.
 630	 */
 631	__u32	lock;			/* seqlock for synchronization */
 632	__u32	index;			/* hardware event identifier */
 633	__s64	offset;			/* add to hardware event value */
 634	__u64	time_enabled;		/* time event active */
 635	__u64	time_running;		/* time event on CPU */
 636	union {
 637		__u64	capabilities;
 638		struct {
 639			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
 640				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
 641
 642				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
 643				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
 644				cap_user_time_zero	: 1, /* The time_zero field is used */
 645				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
 646				cap_____res		: 58;
 647		};
 648	};
 649
 650	/*
 651	 * If cap_user_rdpmc this field provides the bit-width of the value
 652	 * read using the rdpmc() or equivalent instruction. This can be used
 653	 * to sign extend the result like:
 654	 *
 655	 *   pmc <<= 64 - width;
 656	 *   pmc >>= 64 - width; // signed shift right
 657	 *   count += pmc;
 658	 */
 659	__u16	pmc_width;
 660
 661	/*
 662	 * If cap_usr_time the below fields can be used to compute the time
 663	 * delta since time_enabled (in ns) using RDTSC or similar.
 664	 *
 665	 *   u64 quot, rem;
 666	 *   u64 delta;
 667	 *
 668	 *   quot = (cyc >> time_shift);
 669	 *   rem = cyc & (((u64)1 << time_shift) - 1);
 670	 *   delta = time_offset + quot * time_mult +
 671	 *              ((rem * time_mult) >> time_shift);
 672	 *
 673	 * Where time_offset,time_mult,time_shift and cyc are read in the
 674	 * seqcount loop described above. This delta can then be added to
 675	 * enabled and possible running (if index), improving the scaling:
 676	 *
 677	 *   enabled += delta;
 678	 *   if (index)
 679	 *     running += delta;
 680	 *
 681	 *   quot = count / running;
 682	 *   rem  = count % running;
 683	 *   count = quot * enabled + (rem * enabled) / running;
 684	 */
 685	__u16	time_shift;
 686	__u32	time_mult;
 687	__u64	time_offset;
 688	/*
 689	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
 690	 * from sample timestamps.
 691	 *
 692	 *   time = timestamp - time_zero;
 693	 *   quot = time / time_mult;
 694	 *   rem  = time % time_mult;
 695	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
 696	 *
 697	 * And vice versa:
 698	 *
 699	 *   quot = cyc >> time_shift;
 700	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
 701	 *   timestamp = time_zero + quot * time_mult +
 702	 *               ((rem * time_mult) >> time_shift);
 703	 */
 704	__u64	time_zero;
 705
 706	__u32	size;			/* Header size up to __reserved[] fields. */
 707	__u32	__reserved_1;
 708
 709	/*
 710	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
 711	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
 712	 *
 713	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
 714	 *
 715	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
 716	 *       is a correction on top of cap_usr_time, and code that doesn't
 717	 *       know about cap_usr_time_short still works under the assumption
 718	 *       the counter doesn't wrap.
 719	 */
 720	__u64	time_cycles;
 721	__u64	time_mask;
 722
 723		/*
 724		 * Hole for extension of the self monitor capabilities
 725		 */
 726
 727	__u8	__reserved[116*8];	/* align to 1k. */
 728
 729	/*
 730	 * Control data for the mmap() data buffer.
 731	 *
 732	 * User-space reading the @data_head value should issue an smp_rmb(),
 733	 * after reading this value.
 734	 *
 735	 * When the mapping is PROT_WRITE the @data_tail value should be
 736	 * written by user-space to reflect the last read data, after issuing
 737	 * an smp_mb() to separate the data read from the ->data_tail store.
 738	 * In this case the kernel will not over-write unread data.
 739	 *
 740	 * See perf_output_put_handle() for the data ordering.
 741	 *
 742	 * data_{offset,size} indicate the location and size of the perf record
 743	 * buffer within the mmapped area.
 744	 */
 745	__u64   data_head;		/* head in the data section */
 746	__u64	data_tail;		/* user-space written tail */
 747	__u64	data_offset;		/* where the buffer starts */
 748	__u64	data_size;		/* data buffer size */
 749
 750	/*
 751	 * AUX area is defined by aux_{offset,size} fields that should be set
 752	 * by the user-space, so that
 753	 *
 754	 *   aux_offset >= data_offset + data_size
 755	 *
 756	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
 757	 *
 758	 * Ring buffer pointers aux_{head,tail} have the same semantics as
 759	 * data_{head,tail} and same ordering rules apply.
 760	 */
 761	__u64	aux_head;
 762	__u64	aux_tail;
 763	__u64	aux_offset;
 764	__u64	aux_size;
 765};
 766
 767/*
 768 * The current state of perf_event_header::misc bits usage:
 769 * ('|' used bit, '-' unused bit)
 770 *
 771 *  012         CDEF
 772 *  |||---------||||
 773 *
 774 *  Where:
 775 *    0-2     CPUMODE_MASK
 776 *
 777 *    C       PROC_MAP_PARSE_TIMEOUT
 778 *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
 779 *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
 780 *    F       (reserved)
 781 */
 782
 783#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
 784#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
 785#define PERF_RECORD_MISC_KERNEL			(1 << 0)
 786#define PERF_RECORD_MISC_USER			(2 << 0)
 787#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
 788#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
 789#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
 790
 791/*
 792 * Indicates that /proc/PID/maps parsing are truncated by time out.
 793 */
 794#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
 795/*
 796 * Following PERF_RECORD_MISC_* are used on different
 797 * events, so can reuse the same bit position:
 798 *
 799 *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
 800 *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
 801 *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
 802 *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
 803 */
 804#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
 805#define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
 806#define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
 807#define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
 808/*
 809 * These PERF_RECORD_MISC_* flags below are safely reused
 810 * for the following events:
 811 *
 812 *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
 813 *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
 814 *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
 815 *
 816 *
 817 * PERF_RECORD_MISC_EXACT_IP:
 818 *   Indicates that the content of PERF_SAMPLE_IP points to
 819 *   the actual instruction that triggered the event. See also
 820 *   perf_event_attr::precise_ip.
 821 *
 822 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
 823 *   Indicates that thread was preempted in TASK_RUNNING state.
 824 *
 825 * PERF_RECORD_MISC_MMAP_BUILD_ID:
 826 *   Indicates that mmap2 event carries build ID data.
 827 */
 828#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
 829#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
 830#define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
 831/*
 832 * Reserve the last bit to indicate some extended misc field
 833 */
 834#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
 835
 836struct perf_event_header {
 837	__u32 type;
 838	__u16 misc;
 839	__u16 size;
 840};
 841
 842struct perf_ns_link_info {
 843	__u64 dev;
 844	__u64 ino;
 845};
 846
 847enum {
 848	NET_NS_INDEX				= 0,
 849	UTS_NS_INDEX				= 1,
 850	IPC_NS_INDEX				= 2,
 851	PID_NS_INDEX				= 3,
 852	USER_NS_INDEX				= 4,
 853	MNT_NS_INDEX				= 5,
 854	CGROUP_NS_INDEX				= 6,
 855
 856	NR_NAMESPACES, /* number of available namespaces */
 857};
 858
 859enum perf_event_type {
 860
 861	/*
 862	 * If perf_event_attr.sample_id_all is set then all event types will
 863	 * have the sample_type selected fields related to where/when
 864	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
 865	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
 866	 * just after the perf_event_header and the fields already present for
 867	 * the existing fields, i.e. at the end of the payload. That way a newer
 868	 * perf.data file will be supported by older perf tools, with these new
 869	 * optional fields being ignored.
 870	 *
 871	 * struct sample_id {
 872	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
 873	 *	{ u64			time;     } && PERF_SAMPLE_TIME
 874	 *	{ u64			id;       } && PERF_SAMPLE_ID
 875	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
 876	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
 877	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
 878	 * } && perf_event_attr::sample_id_all
 879	 *
 880	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
 881	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
 882	 * relative to header.size.
 883	 */
 884
 885	/*
 886	 * The MMAP events record the PROT_EXEC mappings so that we can
 887	 * correlate user-space IPs to code. They have the following structure:
 888	 *
 889	 * struct {
 890	 *	struct perf_event_header	header;
 891	 *
 892	 *	u32				pid, tid;
 893	 *	u64				addr;
 894	 *	u64				len;
 895	 *	u64				pgoff;
 896	 *	char				filename[];
 897	 *	struct sample_id		sample_id;
 898	 * };
 899	 */
 900	PERF_RECORD_MMAP			= 1,
 901
 902	/*
 903	 * struct {
 904	 *	struct perf_event_header	header;
 905	 *	u64				id;
 906	 *	u64				lost;
 907	 *	struct sample_id		sample_id;
 908	 * };
 909	 */
 910	PERF_RECORD_LOST			= 2,
 911
 912	/*
 913	 * struct {
 914	 *	struct perf_event_header	header;
 915	 *
 916	 *	u32				pid, tid;
 917	 *	char				comm[];
 918	 *	struct sample_id		sample_id;
 919	 * };
 920	 */
 921	PERF_RECORD_COMM			= 3,
 922
 923	/*
 924	 * struct {
 925	 *	struct perf_event_header	header;
 926	 *	u32				pid, ppid;
 927	 *	u32				tid, ptid;
 928	 *	u64				time;
 929	 *	struct sample_id		sample_id;
 930	 * };
 931	 */
 932	PERF_RECORD_EXIT			= 4,
 933
 934	/*
 935	 * struct {
 936	 *	struct perf_event_header	header;
 937	 *	u64				time;
 938	 *	u64				id;
 939	 *	u64				stream_id;
 940	 *	struct sample_id		sample_id;
 941	 * };
 942	 */
 943	PERF_RECORD_THROTTLE			= 5,
 944	PERF_RECORD_UNTHROTTLE			= 6,
 945
 946	/*
 947	 * struct {
 948	 *	struct perf_event_header	header;
 949	 *	u32				pid, ppid;
 950	 *	u32				tid, ptid;
 951	 *	u64				time;
 952	 *	struct sample_id		sample_id;
 953	 * };
 954	 */
 955	PERF_RECORD_FORK			= 7,
 956
 957	/*
 958	 * struct {
 959	 *	struct perf_event_header	header;
 960	 *	u32				pid, tid;
 961	 *
 962	 *	struct read_format		values;
 963	 *	struct sample_id		sample_id;
 964	 * };
 965	 */
 966	PERF_RECORD_READ			= 8,
 967
 968	/*
 969	 * struct {
 970	 *	struct perf_event_header	header;
 971	 *
 972	 *	#
 973	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
 974	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
 975	 *	# is fixed relative to header.
 976	 *	#
 977	 *
 978	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
 979	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
 980	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
 981	 *	{ u64			time;     } && PERF_SAMPLE_TIME
 982	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
 983	 *	{ u64			id;	  } && PERF_SAMPLE_ID
 984	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
 985	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
 986	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
 987	 *
 988	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
 989	 *
 990	 *	{ u64			nr,
 991	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
 992	 *
 993	 *	#
 994	 *	# The RAW record below is opaque data wrt the ABI
 995	 *	#
 996	 *	# That is, the ABI doesn't make any promises wrt to
 997	 *	# the stability of its content, it may vary depending
 998	 *	# on event, hardware, kernel version and phase of
 999	 *	# the moon.
1000	 *	#
1001	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
1002	 *	#
1003	 *
1004	 *	{ u32			size;
1005	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
1006	 *
1007	 *	{ u64                   nr;
1008	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
1009	 *        { u64 from, to, flags } lbr[nr];
1010	 *        #
1011	 *        # The format of the counters is decided by the
1012	 *        # "branch_counter_nr" and "branch_counter_width",
1013	 *        # which are defined in the ABI.
1014	 *        #
1015	 *        { u64 counters; } cntr[nr] && PERF_SAMPLE_BRANCH_COUNTERS
1016	 *      } && PERF_SAMPLE_BRANCH_STACK
1017	 *
1018	 *	{ u64			abi; # enum perf_sample_regs_abi
1019	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
1020	 *
1021	 *	{ u64			size;
1022	 *	  char			data[size];
1023	 *	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
1024	 *
1025	 *	{ union perf_sample_weight
1026	 *	 {
1027	 *		u64		full; && PERF_SAMPLE_WEIGHT
1028	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
1029	 *		struct {
1030	 *			u32	var1_dw;
1031	 *			u16	var2_w;
1032	 *			u16	var3_w;
1033	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1034	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
1035	 *		struct {
1036	 *			u16	var3_w;
1037	 *			u16	var2_w;
1038	 *			u32	var1_dw;
1039	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1040	 *	#endif
1041	 *	 }
1042	 *	}
1043	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
1044	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
1045	 *	{ u64			abi; # enum perf_sample_regs_abi
1046	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1047	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1048	 *	{ u64			cgroup;} && PERF_SAMPLE_CGROUP
1049	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1050	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1051	 *	{ u64			size;
1052	 *	  char			data[size]; } && PERF_SAMPLE_AUX
1053	 * };
1054	 */
1055	PERF_RECORD_SAMPLE			= 9,
1056
1057	/*
1058	 * The MMAP2 records are an augmented version of MMAP, they add
1059	 * maj, min, ino numbers to be used to uniquely identify each mapping
1060	 *
1061	 * struct {
1062	 *	struct perf_event_header	header;
1063	 *
1064	 *	u32				pid, tid;
1065	 *	u64				addr;
1066	 *	u64				len;
1067	 *	u64				pgoff;
1068	 *	union {
1069	 *		struct {
1070	 *			u32		maj;
1071	 *			u32		min;
1072	 *			u64		ino;
1073	 *			u64		ino_generation;
1074	 *		};
1075	 *		struct {
1076	 *			u8		build_id_size;
1077	 *			u8		__reserved_1;
1078	 *			u16		__reserved_2;
1079	 *			u8		build_id[20];
1080	 *		};
1081	 *	};
1082	 *	u32				prot, flags;
1083	 *	char				filename[];
1084	 *	struct sample_id		sample_id;
1085	 * };
1086	 */
1087	PERF_RECORD_MMAP2			= 10,
1088
1089	/*
1090	 * Records that new data landed in the AUX buffer part.
1091	 *
1092	 * struct {
1093	 *	struct perf_event_header	header;
1094	 *
1095	 *	u64				aux_offset;
1096	 *	u64				aux_size;
1097	 *	u64				flags;
1098	 *	struct sample_id		sample_id;
1099	 * };
1100	 */
1101	PERF_RECORD_AUX				= 11,
1102
1103	/*
1104	 * Indicates that instruction trace has started
1105	 *
1106	 * struct {
1107	 *	struct perf_event_header	header;
1108	 *	u32				pid;
1109	 *	u32				tid;
1110	 *	struct sample_id		sample_id;
1111	 * };
1112	 */
1113	PERF_RECORD_ITRACE_START		= 12,
1114
1115	/*
1116	 * Records the dropped/lost sample number.
1117	 *
1118	 * struct {
1119	 *	struct perf_event_header	header;
1120	 *
1121	 *	u64				lost;
1122	 *	struct sample_id		sample_id;
1123	 * };
1124	 */
1125	PERF_RECORD_LOST_SAMPLES		= 13,
1126
1127	/*
1128	 * Records a context switch in or out (flagged by
1129	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1130	 * PERF_RECORD_SWITCH_CPU_WIDE.
1131	 *
1132	 * struct {
1133	 *	struct perf_event_header	header;
1134	 *	struct sample_id		sample_id;
1135	 * };
1136	 */
1137	PERF_RECORD_SWITCH			= 14,
1138
1139	/*
1140	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1141	 * next_prev_tid that are the next (switching out) or previous
1142	 * (switching in) pid/tid.
1143	 *
1144	 * struct {
1145	 *	struct perf_event_header	header;
1146	 *	u32				next_prev_pid;
1147	 *	u32				next_prev_tid;
1148	 *	struct sample_id		sample_id;
1149	 * };
1150	 */
1151	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1152
1153	/*
1154	 * struct {
1155	 *	struct perf_event_header	header;
1156	 *	u32				pid;
1157	 *	u32				tid;
1158	 *	u64				nr_namespaces;
1159	 *	{ u64				dev, inode; } [nr_namespaces];
1160	 *	struct sample_id		sample_id;
1161	 * };
1162	 */
1163	PERF_RECORD_NAMESPACES			= 16,
1164
1165	/*
1166	 * Record ksymbol register/unregister events:
1167	 *
1168	 * struct {
1169	 *	struct perf_event_header	header;
1170	 *	u64				addr;
1171	 *	u32				len;
1172	 *	u16				ksym_type;
1173	 *	u16				flags;
1174	 *	char				name[];
1175	 *	struct sample_id		sample_id;
1176	 * };
1177	 */
1178	PERF_RECORD_KSYMBOL			= 17,
1179
1180	/*
1181	 * Record BPF events:
1182	 *  enum perf_bpf_event_type {
1183	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1184	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1185	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1186	 *  };
1187	 *
1188	 * struct {
1189	 *	struct perf_event_header	header;
1190	 *	u16				type;
1191	 *	u16				flags;
1192	 *	u32				id;
1193	 *	u8				tag[BPF_TAG_SIZE];
1194	 *	struct sample_id		sample_id;
1195	 * };
1196	 */
1197	PERF_RECORD_BPF_EVENT			= 18,
1198
1199	/*
1200	 * struct {
1201	 *	struct perf_event_header	header;
1202	 *	u64				id;
1203	 *	char				path[];
1204	 *	struct sample_id		sample_id;
1205	 * };
1206	 */
1207	PERF_RECORD_CGROUP			= 19,
1208
1209	/*
1210	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1211	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1212	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1213	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1214	 * followed immediately by the new bytes.
1215	 *
1216	 * struct {
1217	 *	struct perf_event_header	header;
1218	 *	u64				addr;
1219	 *	u16				old_len;
1220	 *	u16				new_len;
1221	 *	u8				bytes[];
1222	 *	struct sample_id		sample_id;
1223	 * };
1224	 */
1225	PERF_RECORD_TEXT_POKE			= 20,
1226
1227	/*
1228	 * Data written to the AUX area by hardware due to aux_output, may need
1229	 * to be matched to the event by an architecture-specific hardware ID.
1230	 * This records the hardware ID, but requires sample_id to provide the
1231	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1232	 * records from multiple events.
1233	 *
1234	 * struct {
1235	 *	struct perf_event_header	header;
1236	 *	u64				hw_id;
1237	 *	struct sample_id		sample_id;
1238	 * };
1239	 */
1240	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
1241
1242	PERF_RECORD_MAX,			/* non-ABI */
1243};
1244
1245enum perf_record_ksymbol_type {
1246	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1247	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1248	/*
1249	 * Out of line code such as kprobe-replaced instructions or optimized
1250	 * kprobes or ftrace trampolines.
1251	 */
1252	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1253	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1254};
1255
1256#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1257
1258enum perf_bpf_event_type {
1259	PERF_BPF_EVENT_UNKNOWN			= 0,
1260	PERF_BPF_EVENT_PROG_LOAD		= 1,
1261	PERF_BPF_EVENT_PROG_UNLOAD		= 2,
1262	PERF_BPF_EVENT_MAX,			/* non-ABI */
1263};
1264
1265#define PERF_MAX_STACK_DEPTH			127
1266#define PERF_MAX_CONTEXTS_PER_STACK		  8
1267
1268enum perf_callchain_context {
1269	PERF_CONTEXT_HV				= (__u64)-32,
1270	PERF_CONTEXT_KERNEL			= (__u64)-128,
1271	PERF_CONTEXT_USER			= (__u64)-512,
1272
1273	PERF_CONTEXT_GUEST			= (__u64)-2048,
1274	PERF_CONTEXT_GUEST_KERNEL		= (__u64)-2176,
1275	PERF_CONTEXT_GUEST_USER			= (__u64)-2560,
1276
1277	PERF_CONTEXT_MAX			= (__u64)-4095,
1278};
1279
1280/**
1281 * PERF_RECORD_AUX::flags bits
1282 */
1283#define PERF_AUX_FLAG_TRUNCATED			0x0001	/* Record was truncated to fit */
1284#define PERF_AUX_FLAG_OVERWRITE			0x0002	/* Snapshot from overwrite mode */
1285#define PERF_AUX_FLAG_PARTIAL			0x0004	/* Record contains gaps */
1286#define PERF_AUX_FLAG_COLLISION			0x0008	/* Sample collided with another */
1287#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
1288
1289/* CoreSight PMU AUX buffer formats */
1290#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT 0x0000 /* Default for backward compatibility */
1291#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW	 0x0100 /* Raw format of the source */
1292
1293#define PERF_FLAG_FD_NO_GROUP			(1UL << 0)
1294#define PERF_FLAG_FD_OUTPUT			(1UL << 1)
1295#define PERF_FLAG_PID_CGROUP			(1UL << 2) /* pid=cgroup ID, per-CPU mode only */
1296#define PERF_FLAG_FD_CLOEXEC			(1UL << 3) /* O_CLOEXEC */
1297
1298#if defined(__LITTLE_ENDIAN_BITFIELD)
1299union perf_mem_data_src {
1300	__u64 val;
1301	struct {
1302		__u64   mem_op      :  5, /* Type of opcode */
1303			mem_lvl     : 14, /* Memory hierarchy level */
1304			mem_snoop   :  5, /* Snoop mode */
1305			mem_lock    :  2, /* Lock instr */
1306			mem_dtlb    :  7, /* TLB access */
1307			mem_lvl_num :  4, /* Memory hierarchy level number */
1308			mem_remote  :  1, /* Remote */
1309			mem_snoopx  :  2, /* Snoop mode, ext */
1310			mem_blk     :  3, /* Access blocked */
1311			mem_hops    :  3, /* Hop level */
1312			mem_rsvd    : 18;
1313	};
1314};
1315#elif defined(__BIG_ENDIAN_BITFIELD)
1316union perf_mem_data_src {
1317	__u64 val;
1318	struct {
1319		__u64	mem_rsvd    : 18,
1320			mem_hops    :  3, /* Hop level */
1321			mem_blk     :  3, /* Access blocked */
1322			mem_snoopx  :  2, /* Snoop mode, ext */
1323			mem_remote  :  1, /* Remote */
1324			mem_lvl_num :  4, /* Memory hierarchy level number */
1325			mem_dtlb    :  7, /* TLB access */
1326			mem_lock    :  2, /* Lock instr */
1327			mem_snoop   :  5, /* Snoop mode */
1328			mem_lvl     : 14, /* Memory hierarchy level */
1329			mem_op      :  5; /* Type of opcode */
1330	};
1331};
1332#else
1333# error "Unknown endianness"
1334#endif
1335
1336/* Type of memory opcode: */
1337#define PERF_MEM_OP_NA				0x0001 /* Not available */
1338#define PERF_MEM_OP_LOAD			0x0002 /* Load instruction */
1339#define PERF_MEM_OP_STORE			0x0004 /* Store instruction */
1340#define PERF_MEM_OP_PFETCH			0x0008 /* Prefetch */
1341#define PERF_MEM_OP_EXEC			0x0010 /* Code (execution) */
1342#define PERF_MEM_OP_SHIFT			0
1343
1344/*
1345 * The PERF_MEM_LVL_* namespace is being deprecated to some extent in
1346 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1347 * We support this namespace in order to not break defined ABIs.
1348 *
1349 * Memory hierarchy (memory level, hit or miss)
1350 */
1351#define PERF_MEM_LVL_NA				0x0001 /* Not available */
1352#define PERF_MEM_LVL_HIT			0x0002 /* Hit level */
1353#define PERF_MEM_LVL_MISS			0x0004 /* Miss level  */
1354#define PERF_MEM_LVL_L1				0x0008 /* L1 */
1355#define PERF_MEM_LVL_LFB			0x0010 /* Line Fill Buffer */
1356#define PERF_MEM_LVL_L2				0x0020 /* L2 */
1357#define PERF_MEM_LVL_L3				0x0040 /* L3 */
1358#define PERF_MEM_LVL_LOC_RAM			0x0080 /* Local DRAM */
1359#define PERF_MEM_LVL_REM_RAM1			0x0100 /* Remote DRAM (1 hop) */
1360#define PERF_MEM_LVL_REM_RAM2			0x0200 /* Remote DRAM (2 hops) */
1361#define PERF_MEM_LVL_REM_CCE1			0x0400 /* Remote Cache (1 hop) */
1362#define PERF_MEM_LVL_REM_CCE2			0x0800 /* Remote Cache (2 hops) */
1363#define PERF_MEM_LVL_IO				0x1000 /* I/O memory */
1364#define PERF_MEM_LVL_UNC			0x2000 /* Uncached memory */
1365#define PERF_MEM_LVL_SHIFT			5
1366
1367#define PERF_MEM_REMOTE_REMOTE			0x0001 /* Remote */
1368#define PERF_MEM_REMOTE_SHIFT			37
1369
1370#define PERF_MEM_LVLNUM_L1			0x0001 /* L1 */
1371#define PERF_MEM_LVLNUM_L2			0x0002 /* L2 */
1372#define PERF_MEM_LVLNUM_L3			0x0003 /* L3 */
1373#define PERF_MEM_LVLNUM_L4			0x0004 /* L4 */
1374#define PERF_MEM_LVLNUM_L2_MHB			0x0005 /* L2 Miss Handling Buffer */
1375#define PERF_MEM_LVLNUM_MSC			0x0006 /* Memory-side Cache */
1376/* 0x007 available */
1377#define PERF_MEM_LVLNUM_UNC			0x0008 /* Uncached */
1378#define PERF_MEM_LVLNUM_CXL			0x0009 /* CXL */
1379#define PERF_MEM_LVLNUM_IO			0x000a /* I/O */
1380#define PERF_MEM_LVLNUM_ANY_CACHE		0x000b /* Any cache */
1381#define PERF_MEM_LVLNUM_LFB			0x000c /* LFB / L1 Miss Handling Buffer */
1382#define PERF_MEM_LVLNUM_RAM			0x000d /* RAM */
1383#define PERF_MEM_LVLNUM_PMEM			0x000e /* PMEM */
1384#define PERF_MEM_LVLNUM_NA			0x000f /* N/A */
1385
1386#define PERF_MEM_LVLNUM_SHIFT			33
1387
1388/* Snoop mode */
1389#define PERF_MEM_SNOOP_NA			0x0001 /* Not available */
1390#define PERF_MEM_SNOOP_NONE			0x0002 /* No snoop */
1391#define PERF_MEM_SNOOP_HIT			0x0004 /* Snoop hit */
1392#define PERF_MEM_SNOOP_MISS			0x0008 /* Snoop miss */
1393#define PERF_MEM_SNOOP_HITM			0x0010 /* Snoop hit modified */
1394#define PERF_MEM_SNOOP_SHIFT			19
1395
1396#define PERF_MEM_SNOOPX_FWD			0x0001 /* Forward */
1397#define PERF_MEM_SNOOPX_PEER			0x0002 /* Transfer from peer */
1398#define PERF_MEM_SNOOPX_SHIFT			38
1399
1400/* Locked instruction */
1401#define PERF_MEM_LOCK_NA			0x0001 /* Not available */
1402#define PERF_MEM_LOCK_LOCKED			0x0002 /* Locked transaction */
1403#define PERF_MEM_LOCK_SHIFT			24
1404
1405/* TLB access */
1406#define PERF_MEM_TLB_NA				0x0001 /* Not available */
1407#define PERF_MEM_TLB_HIT			0x0002 /* Hit level */
1408#define PERF_MEM_TLB_MISS			0x0004 /* Miss level */
1409#define PERF_MEM_TLB_L1				0x0008 /* L1 */
1410#define PERF_MEM_TLB_L2				0x0010 /* L2 */
1411#define PERF_MEM_TLB_WK				0x0020 /* Hardware Walker*/
1412#define PERF_MEM_TLB_OS				0x0040 /* OS fault handler */
1413#define PERF_MEM_TLB_SHIFT			26
1414
1415/* Access blocked */
1416#define PERF_MEM_BLK_NA				0x0001 /* Not available */
1417#define PERF_MEM_BLK_DATA			0x0002 /* Data could not be forwarded */
1418#define PERF_MEM_BLK_ADDR			0x0004 /* Address conflict */
1419#define PERF_MEM_BLK_SHIFT			40
1420
1421/* Hop level */
1422#define PERF_MEM_HOPS_0				0x0001 /* Remote core, same node */
1423#define PERF_MEM_HOPS_1				0x0002 /* Remote node, same socket */
1424#define PERF_MEM_HOPS_2				0x0003 /* Remote socket, same board */
1425#define PERF_MEM_HOPS_3				0x0004 /* Remote board */
1426/* 5-7 available */
1427#define PERF_MEM_HOPS_SHIFT			43
1428
1429#define PERF_MEM_S(a, s) \
1430	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1431
1432/*
1433 * Layout of single taken branch records:
1434 *
1435 *      from: source instruction (may not always be a branch insn)
1436 *        to: branch target
1437 *   mispred: branch target was mispredicted
1438 * predicted: branch target was predicted
1439 *
1440 * support for mispred, predicted is optional. In case it
1441 * is not supported mispred = predicted = 0.
1442 *
1443 *     in_tx: running in a hardware transaction
1444 *     abort: aborting a hardware transaction
1445 *    cycles: cycles from last branch (or 0 if not supported)
1446 *      type: branch type
1447 *      spec: branch speculation info (or 0 if not supported)
1448 */
1449struct perf_branch_entry {
1450	__u64	from;
1451	__u64	to;
1452	__u64	mispred   :  1, /* target mispredicted */
1453		predicted :  1, /* target predicted */
1454		in_tx     :  1, /* in transaction */
1455		abort     :  1, /* transaction abort */
1456		cycles    : 16, /* cycle count to last branch */
1457		type      :  4, /* branch type */
1458		spec      :  2, /* branch speculation info */
1459		new_type  :  4, /* additional branch type */
1460		priv      :  3, /* privilege level */
1461		reserved  : 31;
1462};
1463
1464/* Size of used info bits in struct perf_branch_entry */
1465#define PERF_BRANCH_ENTRY_INFO_BITS_MAX		33
1466
1467union perf_sample_weight {
1468	__u64	      full;
1469#if defined(__LITTLE_ENDIAN_BITFIELD)
1470	struct {
1471		__u32 var1_dw;
1472		__u16 var2_w;
1473		__u16 var3_w;
1474	};
1475#elif defined(__BIG_ENDIAN_BITFIELD)
1476	struct {
1477		__u16 var3_w;
1478		__u16 var2_w;
1479		__u32 var1_dw;
1480	};
1481#else
1482# error "Unknown endianness"
1483#endif
1484};
1485
1486#endif /* _LINUX_PERF_EVENT_H */