master
   1/* SPDX-License-Identifier: MIT */
   2/*
   3 * Copyright © 2023 Intel Corporation
   4 */
   5
   6#ifndef _XE_DRM_H_
   7#define _XE_DRM_H_
   8
   9#include "drm.h"
  10
  11#if defined(__cplusplus)
  12extern "C" {
  13#endif
  14
  15/*
  16 * Please note that modifications to all structs defined here are
  17 * subject to backwards-compatibility constraints.
  18 * Sections in this file are organized as follows:
  19 *   1. IOCTL definition
  20 *   2. Extension definition and helper structs
  21 *   3. IOCTL's Query structs in the order of the Query's entries.
  22 *   4. The rest of IOCTL structs in the order of IOCTL declaration.
  23 */
  24
  25/**
  26 * DOC: Xe Device Block Diagram
  27 *
  28 * The diagram below represents a high-level simplification of a discrete
  29 * GPU supported by the Xe driver. It shows some device components which
  30 * are necessary to understand this API, as well as how their relations
  31 * to each other. This diagram does not represent real hardware::
  32 *
  33 *   ┌──────────────────────────────────────────────────────────────────┐
  34 *   │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
  35 *   │ │        ┌───────────────────────┐   ┌─────┐       │ │ ┌─────┐ │ │
  36 *   │ │        │         VRAM0         ├───┤ ... │       │ │ │VRAM1│ │ │
  37 *   │ │        └───────────┬───────────┘   └─GT1─┘       │ │ └──┬──┘ │ │
  38 *   │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
  39 *   │ │ │ ┌─────────────────────┐  ┌─────────────────┐ │ │ │ │     │ │ │
  40 *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
  41 *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │RCS0 │ │BCS0 │ │ │ │ │ │     │ │ │
  42 *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
  43 *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
  44 *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VCS0 │ │VCS1 │ │ │ │ │ │     │ │ │
  45 *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
  46 *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
  47 *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
  48 *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
  49 *   │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
  50 *   │ │ │ │ │EU│ │EU│ │EU│ │EU│ │  │ │CCS0 │ │CCS1 │ │ │ │ │ │     │ │ │
  51 *   │ │ │ │ └──┘ └──┘ └──┘ └──┘ │  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
  52 *   │ │ │ └─────────DSS─────────┘  │ ┌─────┐ ┌─────┐ │ │ │ │ │     │ │ │
  53 *   │ │ │                          │ │CCS2 │ │CCS3 │ │ │ │ │ │     │ │ │
  54 *   │ │ │ ┌─────┐ ┌─────┐ ┌─────┐  │ └─────┘ └─────┘ │ │ │ │ │     │ │ │
  55 *   │ │ │ │ ... │ │ ... │ │ ... │  │                 │ │ │ │ │     │ │ │
  56 *   │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘  └─────Engines─────┘ │ │ │ │     │ │ │
  57 *   │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
  58 *   │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
  59 *   └─────────────────────────────Device0───────┬──────────────────────┘
  60 *                                               │
  61 *                        ───────────────────────┴────────── PCI bus
  62 */
  63
  64/**
  65 * DOC: Xe uAPI Overview
  66 *
  67 * This section aims to describe the Xe's IOCTL entries, its structs, and other
  68 * Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
  69 * entries and usage.
  70 *
  71 * List of supported IOCTLs:
  72 *  - &DRM_IOCTL_XE_DEVICE_QUERY
  73 *  - &DRM_IOCTL_XE_GEM_CREATE
  74 *  - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
  75 *  - &DRM_IOCTL_XE_VM_CREATE
  76 *  - &DRM_IOCTL_XE_VM_DESTROY
  77 *  - &DRM_IOCTL_XE_VM_BIND
  78 *  - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
  79 *  - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
  80 *  - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
  81 *  - &DRM_IOCTL_XE_EXEC
  82 *  - &DRM_IOCTL_XE_WAIT_USER_FENCE
  83 *  - &DRM_IOCTL_XE_OBSERVATION
  84 */
  85
  86/*
  87 * xe specific ioctls.
  88 *
  89 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
  90 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
  91 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
  92 */
  93#define DRM_XE_DEVICE_QUERY		0x00
  94#define DRM_XE_GEM_CREATE		0x01
  95#define DRM_XE_GEM_MMAP_OFFSET		0x02
  96#define DRM_XE_VM_CREATE		0x03
  97#define DRM_XE_VM_DESTROY		0x04
  98#define DRM_XE_VM_BIND			0x05
  99#define DRM_XE_EXEC_QUEUE_CREATE	0x06
 100#define DRM_XE_EXEC_QUEUE_DESTROY	0x07
 101#define DRM_XE_EXEC_QUEUE_GET_PROPERTY	0x08
 102#define DRM_XE_EXEC			0x09
 103#define DRM_XE_WAIT_USER_FENCE		0x0a
 104#define DRM_XE_OBSERVATION		0x0b
 105
 106/* Must be kept compact -- no holes */
 107
 108#define DRM_IOCTL_XE_DEVICE_QUERY		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
 109#define DRM_IOCTL_XE_GEM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
 110#define DRM_IOCTL_XE_GEM_MMAP_OFFSET		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
 111#define DRM_IOCTL_XE_VM_CREATE			DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
 112#define DRM_IOCTL_XE_VM_DESTROY			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
 113#define DRM_IOCTL_XE_VM_BIND			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
 114#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
 115#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
 116#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY	DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
 117#define DRM_IOCTL_XE_EXEC			DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
 118#define DRM_IOCTL_XE_WAIT_USER_FENCE		DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
 119#define DRM_IOCTL_XE_OBSERVATION		DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
 120
 121/**
 122 * DOC: Xe IOCTL Extensions
 123 *
 124 * Before detailing the IOCTLs and its structs, it is important to highlight
 125 * that every IOCTL in Xe is extensible.
 126 *
 127 * Many interfaces need to grow over time. In most cases we can simply
 128 * extend the struct and have userspace pass in more data. Another option,
 129 * as demonstrated by Vulkan's approach to providing extensions for forward
 130 * and backward compatibility, is to use a list of optional structs to
 131 * provide those extra details.
 132 *
 133 * The key advantage to using an extension chain is that it allows us to
 134 * redefine the interface more easily than an ever growing struct of
 135 * increasing complexity, and for large parts of that interface to be
 136 * entirely optional. The downside is more pointer chasing; chasing across
 137 * the boundary with pointers encapsulated inside u64.
 138 *
 139 * Example chaining:
 140 *
 141 * .. code-block:: C
 142 *
 143 *	struct drm_xe_user_extension ext3 {
 144 *		.next_extension = 0, // end
 145 *		.name = ...,
 146 *	};
 147 *	struct drm_xe_user_extension ext2 {
 148 *		.next_extension = (uintptr_t)&ext3,
 149 *		.name = ...,
 150 *	};
 151 *	struct drm_xe_user_extension ext1 {
 152 *		.next_extension = (uintptr_t)&ext2,
 153 *		.name = ...,
 154 *	};
 155 *
 156 * Typically the struct drm_xe_user_extension would be embedded in some uAPI
 157 * struct, and in this case we would feed it the head of the chain(i.e ext1),
 158 * which would then apply all of the above extensions.
 159*/
 160
 161/**
 162 * struct drm_xe_user_extension - Base class for defining a chain of extensions
 163 */
 164struct drm_xe_user_extension {
 165	/**
 166	 * @next_extension:
 167	 *
 168	 * Pointer to the next struct drm_xe_user_extension, or zero if the end.
 169	 */
 170	__u64 next_extension;
 171
 172	/**
 173	 * @name: Name of the extension.
 174	 *
 175	 * Note that the name here is just some integer.
 176	 *
 177	 * Also note that the name space for this is not global for the whole
 178	 * driver, but rather its scope/meaning is limited to the specific piece
 179	 * of uAPI which has embedded the struct drm_xe_user_extension.
 180	 */
 181	__u32 name;
 182
 183	/**
 184	 * @pad: MBZ
 185	 *
 186	 * All undefined bits must be zero.
 187	 */
 188	__u32 pad;
 189};
 190
 191/**
 192 * struct drm_xe_ext_set_property - Generic set property extension
 193 *
 194 * A generic struct that allows any of the Xe's IOCTL to be extended
 195 * with a set_property operation.
 196 */
 197struct drm_xe_ext_set_property {
 198	/** @base: base user extension */
 199	struct drm_xe_user_extension base;
 200
 201	/** @property: property to set */
 202	__u32 property;
 203
 204	/** @pad: MBZ */
 205	__u32 pad;
 206
 207	/** @value: property value */
 208	__u64 value;
 209
 210	/** @reserved: Reserved */
 211	__u64 reserved[2];
 212};
 213
 214/**
 215 * struct drm_xe_engine_class_instance - instance of an engine class
 216 *
 217 * It is returned as part of the @drm_xe_engine, but it also is used as
 218 * the input of engine selection for both @drm_xe_exec_queue_create and
 219 * @drm_xe_query_engine_cycles
 220 *
 221 * The @engine_class can be:
 222 *  - %DRM_XE_ENGINE_CLASS_RENDER
 223 *  - %DRM_XE_ENGINE_CLASS_COPY
 224 *  - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
 225 *  - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
 226 *  - %DRM_XE_ENGINE_CLASS_COMPUTE
 227 *  - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
 228 *    hardware engine class). Used for creating ordered queues of VM
 229 *    bind operations.
 230 */
 231struct drm_xe_engine_class_instance {
 232#define DRM_XE_ENGINE_CLASS_RENDER		0
 233#define DRM_XE_ENGINE_CLASS_COPY		1
 234#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE	2
 235#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE	3
 236#define DRM_XE_ENGINE_CLASS_COMPUTE		4
 237#define DRM_XE_ENGINE_CLASS_VM_BIND		5
 238	/** @engine_class: engine class id */
 239	__u16 engine_class;
 240	/** @engine_instance: engine instance id */
 241	__u16 engine_instance;
 242	/** @gt_id: Unique ID of this GT within the PCI Device */
 243	__u16 gt_id;
 244	/** @pad: MBZ */
 245	__u16 pad;
 246};
 247
 248/**
 249 * struct drm_xe_engine - describe hardware engine
 250 */
 251struct drm_xe_engine {
 252	/** @instance: The @drm_xe_engine_class_instance */
 253	struct drm_xe_engine_class_instance instance;
 254
 255	/** @reserved: Reserved */
 256	__u64 reserved[3];
 257};
 258
 259/**
 260 * struct drm_xe_query_engines - describe engines
 261 *
 262 * If a query is made with a struct @drm_xe_device_query where .query
 263 * is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
 264 * struct @drm_xe_query_engines in .data.
 265 */
 266struct drm_xe_query_engines {
 267	/** @num_engines: number of engines returned in @engines */
 268	__u32 num_engines;
 269	/** @pad: MBZ */
 270	__u32 pad;
 271	/** @engines: The returned engines for this device */
 272	struct drm_xe_engine engines[];
 273};
 274
 275/**
 276 * enum drm_xe_memory_class - Supported memory classes.
 277 */
 278enum drm_xe_memory_class {
 279	/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
 280	DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
 281	/**
 282	 * @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
 283	 * represents the memory that is local to the device, which we
 284	 * call VRAM. Not valid on integrated platforms.
 285	 */
 286	DRM_XE_MEM_REGION_CLASS_VRAM
 287};
 288
 289/**
 290 * struct drm_xe_mem_region - Describes some region as known to
 291 * the driver.
 292 */
 293struct drm_xe_mem_region {
 294	/**
 295	 * @mem_class: The memory class describing this region.
 296	 *
 297	 * See enum drm_xe_memory_class for supported values.
 298	 */
 299	__u16 mem_class;
 300	/**
 301	 * @instance: The unique ID for this region, which serves as the
 302	 * index in the placement bitmask used as argument for
 303	 * &DRM_IOCTL_XE_GEM_CREATE
 304	 */
 305	__u16 instance;
 306	/**
 307	 * @min_page_size: Min page-size in bytes for this region.
 308	 *
 309	 * When the kernel allocates memory for this region, the
 310	 * underlying pages will be at least @min_page_size in size.
 311	 * Buffer objects with an allowable placement in this region must be
 312	 * created with a size aligned to this value.
 313	 * GPU virtual address mappings of (parts of) buffer objects that
 314	 * may be placed in this region must also have their GPU virtual
 315	 * address and range aligned to this value.
 316	 * Affected IOCTLS will return %-EINVAL if alignment restrictions are
 317	 * not met.
 318	 */
 319	__u32 min_page_size;
 320	/**
 321	 * @total_size: The usable size in bytes for this region.
 322	 */
 323	__u64 total_size;
 324	/**
 325	 * @used: Estimate of the memory used in bytes for this region.
 326	 *
 327	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
 328	 * accounting.  Without this the value here will always equal
 329	 * zero.
 330	 */
 331	__u64 used;
 332	/**
 333	 * @cpu_visible_size: How much of this region can be CPU
 334	 * accessed, in bytes.
 335	 *
 336	 * This will always be <= @total_size, and the remainder (if
 337	 * any) will not be CPU accessible. If the CPU accessible part
 338	 * is smaller than @total_size then this is referred to as a
 339	 * small BAR system.
 340	 *
 341	 * On systems without small BAR (full BAR), the probed_size will
 342	 * always equal the @total_size, since all of it will be CPU
 343	 * accessible.
 344	 *
 345	 * Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
 346	 * regions (for other types the value here will always equal
 347	 * zero).
 348	 */
 349	__u64 cpu_visible_size;
 350	/**
 351	 * @cpu_visible_used: Estimate of CPU visible memory used, in
 352	 * bytes.
 353	 *
 354	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
 355	 * accounting. Without this the value here will always equal
 356	 * zero.  Note this is only currently tracked for
 357	 * DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
 358	 * here will always be zero).
 359	 */
 360	__u64 cpu_visible_used;
 361	/** @reserved: Reserved */
 362	__u64 reserved[6];
 363};
 364
 365/**
 366 * struct drm_xe_query_mem_regions - describe memory regions
 367 *
 368 * If a query is made with a struct drm_xe_device_query where .query
 369 * is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
 370 * struct drm_xe_query_mem_regions in .data.
 371 */
 372struct drm_xe_query_mem_regions {
 373	/** @num_mem_regions: number of memory regions returned in @mem_regions */
 374	__u32 num_mem_regions;
 375	/** @pad: MBZ */
 376	__u32 pad;
 377	/** @mem_regions: The returned memory regions for this device */
 378	struct drm_xe_mem_region mem_regions[];
 379};
 380
 381/**
 382 * struct drm_xe_query_config - describe the device configuration
 383 *
 384 * If a query is made with a struct drm_xe_device_query where .query
 385 * is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
 386 * struct drm_xe_query_config in .data.
 387 *
 388 * The index in @info can be:
 389 *  - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
 390 *    and the device revision (next 8 bits)
 391 *  - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
 392 *    configuration, see list below
 393 *
 394 *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
 395 *      has usable VRAM
 396 *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY - Flag is set if the device
 397 *      has low latency hint support
 398 *    - %DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR - Flag is set if the
 399 *      device has CPU address mirroring support
 400 *  - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
 401 *    required by this device, typically SZ_4K or SZ_64K
 402 *  - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
 403 *  - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
 404 *    available exec queue priority
 405 */
 406struct drm_xe_query_config {
 407	/** @num_params: number of parameters returned in info */
 408	__u32 num_params;
 409
 410	/** @pad: MBZ */
 411	__u32 pad;
 412
 413#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID	0
 414#define DRM_XE_QUERY_CONFIG_FLAGS			1
 415	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM	(1 << 0)
 416	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY	(1 << 1)
 417	#define DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR	(1 << 2)
 418#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT		2
 419#define DRM_XE_QUERY_CONFIG_VA_BITS			3
 420#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY	4
 421	/** @info: array of elements containing the config info */
 422	__u64 info[];
 423};
 424
 425/**
 426 * struct drm_xe_gt - describe an individual GT.
 427 *
 428 * To be used with drm_xe_query_gt_list, which will return a list with all the
 429 * existing GT individual descriptions.
 430 * Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
 431 * implementing graphics and/or media operations.
 432 *
 433 * The index in @type can be:
 434 *  - %DRM_XE_QUERY_GT_TYPE_MAIN
 435 *  - %DRM_XE_QUERY_GT_TYPE_MEDIA
 436 */
 437struct drm_xe_gt {
 438#define DRM_XE_QUERY_GT_TYPE_MAIN		0
 439#define DRM_XE_QUERY_GT_TYPE_MEDIA		1
 440	/** @type: GT type: Main or Media */
 441	__u16 type;
 442	/** @tile_id: Tile ID where this GT lives (Information only) */
 443	__u16 tile_id;
 444	/** @gt_id: Unique ID of this GT within the PCI Device */
 445	__u16 gt_id;
 446	/** @pad: MBZ */
 447	__u16 pad[3];
 448	/** @reference_clock: A clock frequency for timestamp */
 449	__u32 reference_clock;
 450	/**
 451	 * @near_mem_regions: Bit mask of instances from
 452	 * drm_xe_query_mem_regions that are nearest to the current engines
 453	 * of this GT.
 454	 * Each index in this mask refers directly to the struct
 455	 * drm_xe_query_mem_regions' instance, no assumptions should
 456	 * be made about order. The type of each region is described
 457	 * by struct drm_xe_query_mem_regions' mem_class.
 458	 */
 459	__u64 near_mem_regions;
 460	/**
 461	 * @far_mem_regions: Bit mask of instances from
 462	 * drm_xe_query_mem_regions that are far from the engines of this GT.
 463	 * In general, they have extra indirections when compared to the
 464	 * @near_mem_regions. For a discrete device this could mean system
 465	 * memory and memory living in a different tile.
 466	 * Each index in this mask refers directly to the struct
 467	 * drm_xe_query_mem_regions' instance, no assumptions should
 468	 * be made about order. The type of each region is described
 469	 * by struct drm_xe_query_mem_regions' mem_class.
 470	 */
 471	__u64 far_mem_regions;
 472	/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
 473	__u16 ip_ver_major;
 474	/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
 475	__u16 ip_ver_minor;
 476	/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
 477	__u16 ip_ver_rev;
 478	/** @pad2: MBZ */
 479	__u16 pad2;
 480	/** @reserved: Reserved */
 481	__u64 reserved[7];
 482};
 483
 484/**
 485 * struct drm_xe_query_gt_list - A list with GT description items.
 486 *
 487 * If a query is made with a struct drm_xe_device_query where .query
 488 * is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
 489 * drm_xe_query_gt_list in .data.
 490 */
 491struct drm_xe_query_gt_list {
 492	/** @num_gt: number of GT items returned in gt_list */
 493	__u32 num_gt;
 494	/** @pad: MBZ */
 495	__u32 pad;
 496	/** @gt_list: The GT list returned for this device */
 497	struct drm_xe_gt gt_list[];
 498};
 499
 500/**
 501 * struct drm_xe_query_topology_mask - describe the topology mask of a GT
 502 *
 503 * This is the hardware topology which reflects the internal physical
 504 * structure of the GPU.
 505 *
 506 * If a query is made with a struct drm_xe_device_query where .query
 507 * is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
 508 * struct drm_xe_query_topology_mask in .data.
 509 *
 510 * The @type can be:
 511 *  - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
 512 *    (DSS) available for geometry operations. For example a query response
 513 *    containing the following in mask:
 514 *    ``DSS_GEOMETRY    ff ff ff ff 00 00 00 00``
 515 *    means 32 DSS are available for geometry.
 516 *  - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
 517 *    (DSS) available for compute operations. For example a query response
 518 *    containing the following in mask:
 519 *    ``DSS_COMPUTE    ff ff ff ff 00 00 00 00``
 520 *    means 32 DSS are available for compute.
 521 *  - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks.  This type
 522 *    may be omitted if the driver is unable to query the mask from the
 523 *    hardware.
 524 *  - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
 525 *    available per Dual Sub Slices (DSS). For example a query response
 526 *    containing the following in mask:
 527 *    ``EU_PER_DSS    ff ff 00 00 00 00 00 00``
 528 *    means each DSS has 16 SIMD8 EUs. This type may be omitted if device
 529 *    doesn't have SIMD8 EUs.
 530 *  - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
 531 *    Units (EU) available per Dual Sub Slices (DSS). For example a query
 532 *    response containing the following in mask:
 533 *    ``SIMD16_EU_PER_DSS    ff ff 00 00 00 00 00 00``
 534 *    means each DSS has 16 SIMD16 EUs. This type may be omitted if device
 535 *    doesn't have SIMD16 EUs.
 536 */
 537struct drm_xe_query_topology_mask {
 538	/** @gt_id: GT ID the mask is associated with */
 539	__u16 gt_id;
 540
 541#define DRM_XE_TOPO_DSS_GEOMETRY	1
 542#define DRM_XE_TOPO_DSS_COMPUTE		2
 543#define DRM_XE_TOPO_L3_BANK		3
 544#define DRM_XE_TOPO_EU_PER_DSS		4
 545#define DRM_XE_TOPO_SIMD16_EU_PER_DSS	5
 546	/** @type: type of mask */
 547	__u16 type;
 548
 549	/** @num_bytes: number of bytes in requested mask */
 550	__u32 num_bytes;
 551
 552	/** @mask: little-endian mask of @num_bytes */
 553	__u8 mask[];
 554};
 555
 556/**
 557 * struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
 558 *
 559 * If a query is made with a struct drm_xe_device_query where .query is equal to
 560 * DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
 561 * in .data. struct drm_xe_query_engine_cycles is allocated by the user and
 562 * .data points to this allocated structure.
 563 *
 564 * The query returns the engine cycles, which along with GT's @reference_clock,
 565 * can be used to calculate the engine timestamp. In addition the
 566 * query returns a set of cpu timestamps that indicate when the command
 567 * streamer cycle count was captured.
 568 */
 569struct drm_xe_query_engine_cycles {
 570	/**
 571	 * @eci: This is input by the user and is the engine for which command
 572	 * streamer cycles is queried.
 573	 */
 574	struct drm_xe_engine_class_instance eci;
 575
 576	/**
 577	 * @clockid: This is input by the user and is the reference clock id for
 578	 * CPU timestamp. For definition, see clock_gettime(2) and
 579	 * perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
 580	 * CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
 581	 */
 582	__s32 clockid;
 583
 584	/** @width: Width of the engine cycle counter in bits. */
 585	__u32 width;
 586
 587	/**
 588	 * @engine_cycles: Engine cycles as read from its register
 589	 * at 0x358 offset.
 590	 */
 591	__u64 engine_cycles;
 592
 593	/**
 594	 * @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
 595	 * reading the engine_cycles register using the reference clockid set by the
 596	 * user.
 597	 */
 598	__u64 cpu_timestamp;
 599
 600	/**
 601	 * @cpu_delta: Time delta in ns captured around reading the lower dword
 602	 * of the engine_cycles register.
 603	 */
 604	__u64 cpu_delta;
 605};
 606
 607/**
 608 * struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
 609 *
 610 * Given a uc_type this will return the branch, major, minor and patch version
 611 * of the micro-controller firmware.
 612 */
 613struct drm_xe_query_uc_fw_version {
 614	/** @uc_type: The micro-controller type to query firmware version */
 615#define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
 616#define XE_QUERY_UC_TYPE_HUC 1
 617	__u16 uc_type;
 618
 619	/** @pad: MBZ */
 620	__u16 pad;
 621
 622	/** @branch_ver: branch uc fw version */
 623	__u32 branch_ver;
 624	/** @major_ver: major uc fw version */
 625	__u32 major_ver;
 626	/** @minor_ver: minor uc fw version */
 627	__u32 minor_ver;
 628	/** @patch_ver: patch uc fw version */
 629	__u32 patch_ver;
 630
 631	/** @pad2: MBZ */
 632	__u32 pad2;
 633
 634	/** @reserved: Reserved */
 635	__u64 reserved;
 636};
 637
 638/**
 639 * struct drm_xe_query_pxp_status - query if PXP is ready
 640 *
 641 * If PXP is enabled and no fatal error has occurred, the status will be set to
 642 * one of the following values:
 643 * 0: PXP init still in progress
 644 * 1: PXP init complete
 645 *
 646 * If PXP is not enabled or something has gone wrong, the query will be failed
 647 * with one of the following error codes:
 648 * -ENODEV: PXP not supported or disabled;
 649 * -EIO: fatal error occurred during init, so PXP will never be enabled;
 650 * -EINVAL: incorrect value provided as part of the query;
 651 * -EFAULT: error copying the memory between kernel and userspace.
 652 *
 653 * The status can only be 0 in the first few seconds after driver load. If
 654 * everything works as expected, the status will transition to init complete in
 655 * less than 1 second, while in case of errors the driver might take longer to
 656 * start returning an error code, but it should still take less than 10 seconds.
 657 *
 658 * The supported session type bitmask is based on the values in
 659 * enum drm_xe_pxp_session_type. TYPE_NONE is always supported and therefore
 660 * is not reported in the bitmask.
 661 *
 662 */
 663struct drm_xe_query_pxp_status {
 664	/** @status: current PXP status */
 665	__u32 status;
 666
 667	/** @supported_session_types: bitmask of supported PXP session types */
 668	__u32 supported_session_types;
 669};
 670
 671/**
 672 * struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
 673 * structure to query device information
 674 *
 675 * The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
 676 * and sets the value in the query member. This determines the type of
 677 * the structure provided by the driver in data, among struct drm_xe_query_*.
 678 *
 679 * The @query can be:
 680 *  - %DRM_XE_DEVICE_QUERY_ENGINES
 681 *  - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
 682 *  - %DRM_XE_DEVICE_QUERY_CONFIG
 683 *  - %DRM_XE_DEVICE_QUERY_GT_LIST
 684 *  - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
 685 *    configuration of the device such as information on slices, memory,
 686 *    caches, and so on. It is provided as a table of key / value
 687 *    attributes.
 688 *  - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
 689 *  - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
 690 *  - %DRM_XE_DEVICE_QUERY_PXP_STATUS
 691 *
 692 * If size is set to 0, the driver fills it with the required size for
 693 * the requested type of data to query. If size is equal to the required
 694 * size, the queried information is copied into data. If size is set to
 695 * a value different from 0 and different from the required size, the
 696 * IOCTL call returns -EINVAL.
 697 *
 698 * For example the following code snippet allows retrieving and printing
 699 * information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
 700 *
 701 * .. code-block:: C
 702 *
 703 *     struct drm_xe_query_engines *engines;
 704 *     struct drm_xe_device_query query = {
 705 *         .extensions = 0,
 706 *         .query = DRM_XE_DEVICE_QUERY_ENGINES,
 707 *         .size = 0,
 708 *         .data = 0,
 709 *     };
 710 *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
 711 *     engines = malloc(query.size);
 712 *     query.data = (uintptr_t)engines;
 713 *     ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
 714 *     for (int i = 0; i < engines->num_engines; i++) {
 715 *         printf("Engine %d: %s\n", i,
 716 *             engines->engines[i].instance.engine_class ==
 717 *                 DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
 718 *             engines->engines[i].instance.engine_class ==
 719 *                 DRM_XE_ENGINE_CLASS_COPY ? "COPY":
 720 *             engines->engines[i].instance.engine_class ==
 721 *                 DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
 722 *             engines->engines[i].instance.engine_class ==
 723 *                 DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
 724 *             engines->engines[i].instance.engine_class ==
 725 *                 DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
 726 *             "UNKNOWN");
 727 *     }
 728 *     free(engines);
 729 */
 730struct drm_xe_device_query {
 731	/** @extensions: Pointer to the first extension struct, if any */
 732	__u64 extensions;
 733
 734#define DRM_XE_DEVICE_QUERY_ENGINES		0
 735#define DRM_XE_DEVICE_QUERY_MEM_REGIONS		1
 736#define DRM_XE_DEVICE_QUERY_CONFIG		2
 737#define DRM_XE_DEVICE_QUERY_GT_LIST		3
 738#define DRM_XE_DEVICE_QUERY_HWCONFIG		4
 739#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY		5
 740#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES	6
 741#define DRM_XE_DEVICE_QUERY_UC_FW_VERSION	7
 742#define DRM_XE_DEVICE_QUERY_OA_UNITS		8
 743#define DRM_XE_DEVICE_QUERY_PXP_STATUS		9
 744#define DRM_XE_DEVICE_QUERY_EU_STALL		10
 745	/** @query: The type of data to query */
 746	__u32 query;
 747
 748	/** @size: Size of the queried data */
 749	__u32 size;
 750
 751	/** @data: Queried data is placed here */
 752	__u64 data;
 753
 754	/** @reserved: Reserved */
 755	__u64 reserved[2];
 756};
 757
 758/**
 759 * struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
 760 * gem creation
 761 *
 762 * The @flags can be:
 763 *  - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING
 764 *  - %DRM_XE_GEM_CREATE_FLAG_SCANOUT
 765 *  - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
 766 *    possible placement, ensure that the corresponding VRAM allocation
 767 *    will always use the CPU accessible part of VRAM. This is important
 768 *    for small-bar systems (on full-bar systems this gets turned into a
 769 *    noop).
 770 *    Note1: System memory can be used as an extra placement if the kernel
 771 *    should spill the allocation to system memory, if space can't be made
 772 *    available in the CPU accessible part of VRAM (giving the same
 773 *    behaviour as the i915 interface, see
 774 *    I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
 775 *    Note2: For clear-color CCS surfaces the kernel needs to read the
 776 *    clear-color value stored in the buffer, and on discrete platforms we
 777 *    need to use VRAM for display surfaces, therefore the kernel requires
 778 *    setting this flag for such objects, otherwise an error is thrown on
 779 *    small-bar systems.
 780 *
 781 * @cpu_caching supports the following values:
 782 *  - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
 783 *    caching. On iGPU this can't be used for scanout surfaces. Currently
 784 *    not allowed for objects placed in VRAM.
 785 *  - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
 786 *    is uncached. Scanout surfaces should likely use this. All objects
 787 *    that can be placed in VRAM must use this.
 788 *
 789 * This ioctl supports setting the following properties via the
 790 * %DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY extension, which uses the
 791 * generic @drm_xe_ext_set_property struct:
 792 *
 793 *  - %DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
 794 *    this object will be used with. Valid values are listed in enum
 795 *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
 796 *    there is no need to explicitly set that. Objects used with session of type
 797 *    %DRM_XE_PXP_TYPE_HWDRM will be marked as invalid if a PXP invalidation
 798 *    event occurs after their creation. Attempting to flip an invalid object
 799 *    will cause a black frame to be displayed instead. Submissions with invalid
 800 *    objects mapped in the VM will be rejected.
 801 */
 802struct drm_xe_gem_create {
 803#define DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY	0
 804#define   DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE	0
 805	/** @extensions: Pointer to the first extension struct, if any */
 806	__u64 extensions;
 807
 808	/**
 809	 * @size: Size of the object to be created, must match region
 810	 * (system or vram) minimum alignment (&min_page_size).
 811	 */
 812	__u64 size;
 813
 814	/**
 815	 * @placement: A mask of memory instances of where BO can be placed.
 816	 * Each index in this mask refers directly to the struct
 817	 * drm_xe_query_mem_regions' instance, no assumptions should
 818	 * be made about order. The type of each region is described
 819	 * by struct drm_xe_query_mem_regions' mem_class.
 820	 */
 821	__u32 placement;
 822
 823#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING		(1 << 0)
 824#define DRM_XE_GEM_CREATE_FLAG_SCANOUT			(1 << 1)
 825#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM	(1 << 2)
 826	/**
 827	 * @flags: Flags, currently a mask of memory instances of where BO can
 828	 * be placed
 829	 */
 830	__u32 flags;
 831
 832	/**
 833	 * @vm_id: Attached VM, if any
 834	 *
 835	 * If a VM is specified, this BO must:
 836	 *
 837	 *  1. Only ever be bound to that VM.
 838	 *  2. Cannot be exported as a PRIME fd.
 839	 */
 840	__u32 vm_id;
 841
 842	/**
 843	 * @handle: Returned handle for the object.
 844	 *
 845	 * Object handles are nonzero.
 846	 */
 847	__u32 handle;
 848
 849#define DRM_XE_GEM_CPU_CACHING_WB                      1
 850#define DRM_XE_GEM_CPU_CACHING_WC                      2
 851	/**
 852	 * @cpu_caching: The CPU caching mode to select for this object. If
 853	 * mmaping the object the mode selected here will also be used. The
 854	 * exception is when mapping system memory (including data evicted
 855	 * to system) on discrete GPUs. The caching mode selected will
 856	 * then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
 857	 * between GPU- and CPU is guaranteed. The caching mode of
 858	 * existing CPU-mappings will be updated transparently to
 859	 * user-space clients.
 860	 */
 861	__u16 cpu_caching;
 862	/** @pad: MBZ */
 863	__u16 pad[3];
 864
 865	/** @reserved: Reserved */
 866	__u64 reserved[2];
 867};
 868
 869/**
 870 * struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
 871 *
 872 * The @flags can be:
 873 *  - %DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER - For user to query special offset
 874 *    for use in mmap ioctl. Writing to the returned mmap address will generate a
 875 *    PCI memory barrier with low overhead (avoiding IOCTL call as well as writing
 876 *    to VRAM which would also add overhead), acting like an MI_MEM_FENCE
 877 *    instruction.
 878 *
 879 * Note: The mmap size can be at most 4K, due to HW limitations. As a result
 880 * this interface is only supported on CPU architectures that support 4K page
 881 * size. The mmap_offset ioctl will detect this and gracefully return an
 882 * error, where userspace is expected to have a different fallback method for
 883 * triggering a barrier.
 884 *
 885 * Roughly the usage would be as follows:
 886 *
 887 * .. code-block:: C
 888 *
 889 *     struct drm_xe_gem_mmap_offset mmo = {
 890 *         .handle = 0, // must be set to 0
 891 *         .flags = DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER,
 892 *     };
 893 *
 894 *     err = ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo);
 895 *     map = mmap(NULL, size, PROT_WRITE, MAP_SHARED, fd, mmo.offset);
 896 *     map[i] = 0xdeadbeaf; // issue barrier
 897 */
 898struct drm_xe_gem_mmap_offset {
 899	/** @extensions: Pointer to the first extension struct, if any */
 900	__u64 extensions;
 901
 902	/** @handle: Handle for the object being mapped. */
 903	__u32 handle;
 904
 905#define DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER     (1 << 0)
 906	/** @flags: Flags */
 907	__u32 flags;
 908
 909	/** @offset: The fake offset to use for subsequent mmap call */
 910	__u64 offset;
 911
 912	/** @reserved: Reserved */
 913	__u64 reserved[2];
 914};
 915
 916/**
 917 * struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
 918 *
 919 * The @flags can be:
 920 *  - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE - Map the whole virtual address
 921 *    space of the VM to scratch page. A vm_bind would overwrite the scratch
 922 *    page mapping. This flag is mutually exclusive with the
 923 *    %DRM_XE_VM_CREATE_FLAG_FAULT_MODE flag, with an exception of on x2 and
 924 *    xe3 platform.
 925 *  - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
 926 *    exec submissions to its exec_queues that don't have an upper time
 927 *    limit on the job execution time. But exec submissions to these
 928 *    don't allow any of the sync types DRM_XE_SYNC_TYPE_SYNCOBJ,
 929 *    DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ, used as out-syncobjs, that is,
 930 *    together with sync flag DRM_XE_SYNC_FLAG_SIGNAL.
 931 *    LR VMs can be created in recoverable page-fault mode using
 932 *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
 933 *    If that flag is omitted, the UMD can not rely on the slightly
 934 *    different per-VM overcommit semantics that are enabled by
 935 *    DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
 936 *    still enable recoverable pagefaults if supported by the device.
 937 *  - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
 938 *    DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
 939 *    demand when accessed, and also allows per-VM overcommit of memory.
 940 *    The xe driver internally uses recoverable pagefaults to implement
 941 *    this.
 942 */
 943struct drm_xe_vm_create {
 944	/** @extensions: Pointer to the first extension struct, if any */
 945	__u64 extensions;
 946
 947#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE	(1 << 0)
 948#define DRM_XE_VM_CREATE_FLAG_LR_MODE	        (1 << 1)
 949#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE	(1 << 2)
 950	/** @flags: Flags */
 951	__u32 flags;
 952
 953	/** @vm_id: Returned VM ID */
 954	__u32 vm_id;
 955
 956	/** @reserved: Reserved */
 957	__u64 reserved[2];
 958};
 959
 960/**
 961 * struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
 962 */
 963struct drm_xe_vm_destroy {
 964	/** @vm_id: VM ID */
 965	__u32 vm_id;
 966
 967	/** @pad: MBZ */
 968	__u32 pad;
 969
 970	/** @reserved: Reserved */
 971	__u64 reserved[2];
 972};
 973
 974/**
 975 * struct drm_xe_vm_bind_op - run bind operations
 976 *
 977 * The @op can be:
 978 *  - %DRM_XE_VM_BIND_OP_MAP
 979 *  - %DRM_XE_VM_BIND_OP_UNMAP
 980 *  - %DRM_XE_VM_BIND_OP_MAP_USERPTR
 981 *  - %DRM_XE_VM_BIND_OP_UNMAP_ALL
 982 *  - %DRM_XE_VM_BIND_OP_PREFETCH
 983 *
 984 * and the @flags can be:
 985 *  - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
 986 *    to ensure write protection
 987 *  - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
 988 *    MAP operation immediately rather than deferring the MAP to the page
 989 *    fault handler. This is implied on a non-faulting VM as there is no
 990 *    fault handler to defer to.
 991 *  - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
 992 *    tables are setup with a special bit which indicates writes are
 993 *    dropped and all reads return zero. In the future, the NULL flags
 994 *    will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
 995 *    handle MBZ, and the BO offset MBZ. This flag is intended to
 996 *    implement VK sparse bindings.
 997 *  - %DRM_XE_VM_BIND_FLAG_CHECK_PXP - If the object is encrypted via PXP,
 998 *    reject the binding if the encryption key is no longer valid. This
 999 *    flag has no effect on BOs that are not marked as using PXP.
1000 *  - %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR - When the CPU address mirror flag is
1001 *    set, no mappings are created rather the range is reserved for CPU address
1002 *    mirroring which will be populated on GPU page faults or prefetches. Only
1003 *    valid on VMs with DRM_XE_VM_CREATE_FLAG_FAULT_MODE set. The CPU address
1004 *    mirror flag are only valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1005 *    handle MBZ, and the BO offset MBZ.
1006 */
1007struct drm_xe_vm_bind_op {
1008	/** @extensions: Pointer to the first extension struct, if any */
1009	__u64 extensions;
1010
1011	/**
1012	 * @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
1013	 */
1014	__u32 obj;
1015
1016	/**
1017	 * @pat_index: The platform defined @pat_index to use for this mapping.
1018	 * The index basically maps to some predefined memory attributes,
1019	 * including things like caching, coherency, compression etc.  The exact
1020	 * meaning of the pat_index is platform specific and defined in the
1021	 * Bspec and PRMs.  When the KMD sets up the binding the index here is
1022	 * encoded into the ppGTT PTE.
1023	 *
1024	 * For coherency the @pat_index needs to be at least 1way coherent when
1025	 * drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
1026	 * will extract the coherency mode from the @pat_index and reject if
1027	 * there is a mismatch (see note below for pre-MTL platforms).
1028	 *
1029	 * Note: On pre-MTL platforms there is only a caching mode and no
1030	 * explicit coherency mode, but on such hardware there is always a
1031	 * shared-LLC (or is dgpu) so all GT memory accesses are coherent with
1032	 * CPU caches even with the caching mode set as uncached.  It's only the
1033	 * display engine that is incoherent (on dgpu it must be in VRAM which
1034	 * is always mapped as WC on the CPU). However to keep the uapi somewhat
1035	 * consistent with newer platforms the KMD groups the different cache
1036	 * levels into the following coherency buckets on all pre-MTL platforms:
1037	 *
1038	 *	ppGTT UC -> COH_NONE
1039	 *	ppGTT WC -> COH_NONE
1040	 *	ppGTT WT -> COH_NONE
1041	 *	ppGTT WB -> COH_AT_LEAST_1WAY
1042	 *
1043	 * In practice UC/WC/WT should only ever used for scanout surfaces on
1044	 * such platforms (or perhaps in general for dma-buf if shared with
1045	 * another device) since it is only the display engine that is actually
1046	 * incoherent.  Everything else should typically use WB given that we
1047	 * have a shared-LLC.  On MTL+ this completely changes and the HW
1048	 * defines the coherency mode as part of the @pat_index, where
1049	 * incoherent GT access is possible.
1050	 *
1051	 * Note: For userptr and externally imported dma-buf the kernel expects
1052	 * either 1WAY or 2WAY for the @pat_index.
1053	 *
1054	 * For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
1055	 * on the @pat_index. For such mappings there is no actual memory being
1056	 * mapped (the address in the PTE is invalid), so the various PAT memory
1057	 * attributes likely do not apply.  Simply leaving as zero is one
1058	 * option (still a valid pat_index). Same applies to
1059	 * DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR bindings as for such mapping
1060	 * there is no actual memory being mapped.
1061	 */
1062	__u16 pat_index;
1063
1064	/** @pad: MBZ */
1065	__u16 pad;
1066
1067	union {
1068		/**
1069		 * @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
1070		 * ignored for unbind
1071		 */
1072		__u64 obj_offset;
1073
1074		/** @userptr: user pointer to bind on */
1075		__u64 userptr;
1076
1077		/**
1078		 * @cpu_addr_mirror_offset: Offset from GPU @addr to create
1079		 * CPU address mirror mappings. MBZ with current level of
1080		 * support (e.g. 1 to 1 mapping between GPU and CPU mappings
1081		 * only supported).
1082		 */
1083		__s64 cpu_addr_mirror_offset;
1084	};
1085
1086	/**
1087	 * @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
1088	 */
1089	__u64 range;
1090
1091	/** @addr: Address to operate on, MBZ for UNMAP_ALL */
1092	__u64 addr;
1093
1094#define DRM_XE_VM_BIND_OP_MAP		0x0
1095#define DRM_XE_VM_BIND_OP_UNMAP		0x1
1096#define DRM_XE_VM_BIND_OP_MAP_USERPTR	0x2
1097#define DRM_XE_VM_BIND_OP_UNMAP_ALL	0x3
1098#define DRM_XE_VM_BIND_OP_PREFETCH	0x4
1099	/** @op: Bind operation to perform */
1100	__u32 op;
1101
1102#define DRM_XE_VM_BIND_FLAG_READONLY	(1 << 0)
1103#define DRM_XE_VM_BIND_FLAG_IMMEDIATE	(1 << 1)
1104#define DRM_XE_VM_BIND_FLAG_NULL	(1 << 2)
1105#define DRM_XE_VM_BIND_FLAG_DUMPABLE	(1 << 3)
1106#define DRM_XE_VM_BIND_FLAG_CHECK_PXP	(1 << 4)
1107#define DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR	(1 << 5)
1108	/** @flags: Bind flags */
1109	__u32 flags;
1110
1111	/**
1112	 * @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1113	 * It is a region instance, not a mask.
1114	 * To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1115	 */
1116	__u32 prefetch_mem_region_instance;
1117
1118	/** @pad2: MBZ */
1119	__u32 pad2;
1120
1121	/** @reserved: Reserved */
1122	__u64 reserved[3];
1123};
1124
1125/**
1126 * struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1127 *
1128 * Below is an example of a minimal use of @drm_xe_vm_bind to
1129 * asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1130 * illustrate `userptr`. It can be synchronized by using the example
1131 * provided for @drm_xe_sync.
1132 *
1133 * .. code-block:: C
1134 *
1135 *     data = aligned_alloc(ALIGNMENT, BO_SIZE);
1136 *     struct drm_xe_vm_bind bind = {
1137 *         .vm_id = vm,
1138 *         .num_binds = 1,
1139 *         .bind.obj = 0,
1140 *         .bind.obj_offset = to_user_pointer(data),
1141 *         .bind.range = BO_SIZE,
1142 *         .bind.addr = BIND_ADDRESS,
1143 *         .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1144 *         .bind.flags = 0,
1145 *         .num_syncs = 1,
1146 *         .syncs = &sync,
1147 *         .exec_queue_id = 0,
1148 *     };
1149 *     ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1150 *
1151 */
1152struct drm_xe_vm_bind {
1153	/** @extensions: Pointer to the first extension struct, if any */
1154	__u64 extensions;
1155
1156	/** @vm_id: The ID of the VM to bind to */
1157	__u32 vm_id;
1158
1159	/**
1160	 * @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1161	 * and exec queue must have same vm_id. If zero, the default VM bind engine
1162	 * is used.
1163	 */
1164	__u32 exec_queue_id;
1165
1166	/** @pad: MBZ */
1167	__u32 pad;
1168
1169	/** @num_binds: number of binds in this IOCTL */
1170	__u32 num_binds;
1171
1172	union {
1173		/** @bind: used if num_binds == 1 */
1174		struct drm_xe_vm_bind_op bind;
1175
1176		/**
1177		 * @vector_of_binds: userptr to array of struct
1178		 * drm_xe_vm_bind_op if num_binds > 1
1179		 */
1180		__u64 vector_of_binds;
1181	};
1182
1183	/** @pad2: MBZ */
1184	__u32 pad2;
1185
1186	/** @num_syncs: amount of syncs to wait on */
1187	__u32 num_syncs;
1188
1189	/** @syncs: pointer to struct drm_xe_sync array */
1190	__u64 syncs;
1191
1192	/** @reserved: Reserved */
1193	__u64 reserved[2];
1194};
1195
1196/**
1197 * struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1198 *
1199 * This ioctl supports setting the following properties via the
1200 * %DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY extension, which uses the
1201 * generic @drm_xe_ext_set_property struct:
1202 *
1203 *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY - set the queue priority.
1204 *    CAP_SYS_NICE is required to set a value above normal.
1205 *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE - set the queue timeslice
1206 *    duration in microseconds.
1207 *  - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
1208 *    this queue will be used with. Valid values are listed in enum
1209 *    drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
1210 *    there is no need to explicitly set that. When a queue of type
1211 *    %DRM_XE_PXP_TYPE_HWDRM is created, the PXP default HWDRM session
1212 *    (%XE_PXP_HWDRM_DEFAULT_SESSION) will be started, if isn't already running.
1213 *    The user is expected to query the PXP status via the query ioctl (see
1214 *    %DRM_XE_DEVICE_QUERY_PXP_STATUS) and to wait for PXP to be ready before
1215 *    attempting to create a queue with this property. When a queue is created
1216 *    before PXP is ready, the ioctl will return -EBUSY if init is still in
1217 *    progress or -EIO if init failed.
1218 *    Given that going into a power-saving state kills PXP HWDRM sessions,
1219 *    runtime PM will be blocked while queues of this type are alive.
1220 *    All PXP queues will be killed if a PXP invalidation event occurs.
1221 *
1222 * The example below shows how to use @drm_xe_exec_queue_create to create
1223 * a simple exec_queue (no parallel submission) of class
1224 * &DRM_XE_ENGINE_CLASS_RENDER.
1225 *
1226 * .. code-block:: C
1227 *
1228 *     struct drm_xe_engine_class_instance instance = {
1229 *         .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1230 *     };
1231 *     struct drm_xe_exec_queue_create exec_queue_create = {
1232 *          .extensions = 0,
1233 *          .vm_id = vm,
1234 *          .num_bb_per_exec = 1,
1235 *          .num_eng_per_bb = 1,
1236 *          .instances = to_user_pointer(&instance),
1237 *     };
1238 *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1239 *
1240 *     Allow users to provide a hint to kernel for cases demanding low latency
1241 *     profile. Please note it will have impact on power consumption. User can
1242 *     indicate low latency hint with flag while creating exec queue as
1243 *     mentioned below,
1244 *
1245 *     struct drm_xe_exec_queue_create exec_queue_create = {
1246 *          .flags = DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT,
1247 *          .extensions = 0,
1248 *          .vm_id = vm,
1249 *          .num_bb_per_exec = 1,
1250 *          .num_eng_per_bb = 1,
1251 *          .instances = to_user_pointer(&instance),
1252 *     };
1253 *     ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1254 *
1255 */
1256struct drm_xe_exec_queue_create {
1257#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY		0
1258#define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY		0
1259#define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE		1
1260#define   DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE		2
1261	/** @extensions: Pointer to the first extension struct, if any */
1262	__u64 extensions;
1263
1264	/** @width: submission width (number BB per exec) for this exec queue */
1265	__u16 width;
1266
1267	/** @num_placements: number of valid placements for this exec queue */
1268	__u16 num_placements;
1269
1270	/** @vm_id: VM to use for this exec queue */
1271	__u32 vm_id;
1272
1273#define DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT	(1 << 0)
1274	/** @flags: flags to use for this exec queue */
1275	__u32 flags;
1276
1277	/** @exec_queue_id: Returned exec queue ID */
1278	__u32 exec_queue_id;
1279
1280	/**
1281	 * @instances: user pointer to a 2-d array of struct
1282	 * drm_xe_engine_class_instance
1283	 *
1284	 * length = width (i) * num_placements (j)
1285	 * index = j + i * width
1286	 */
1287	__u64 instances;
1288
1289	/** @reserved: Reserved */
1290	__u64 reserved[2];
1291};
1292
1293/**
1294 * struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1295 */
1296struct drm_xe_exec_queue_destroy {
1297	/** @exec_queue_id: Exec queue ID */
1298	__u32 exec_queue_id;
1299
1300	/** @pad: MBZ */
1301	__u32 pad;
1302
1303	/** @reserved: Reserved */
1304	__u64 reserved[2];
1305};
1306
1307/**
1308 * struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1309 *
1310 * The @property can be:
1311 *  - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1312 */
1313struct drm_xe_exec_queue_get_property {
1314	/** @extensions: Pointer to the first extension struct, if any */
1315	__u64 extensions;
1316
1317	/** @exec_queue_id: Exec queue ID */
1318	__u32 exec_queue_id;
1319
1320#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN	0
1321	/** @property: property to get */
1322	__u32 property;
1323
1324	/** @value: property value */
1325	__u64 value;
1326
1327	/** @reserved: Reserved */
1328	__u64 reserved[2];
1329};
1330
1331/**
1332 * struct drm_xe_sync - sync object
1333 *
1334 * The @type can be:
1335 *  - %DRM_XE_SYNC_TYPE_SYNCOBJ
1336 *  - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1337 *  - %DRM_XE_SYNC_TYPE_USER_FENCE
1338 *
1339 * and the @flags can be:
1340 *  - %DRM_XE_SYNC_FLAG_SIGNAL
1341 *
1342 * A minimal use of @drm_xe_sync looks like this:
1343 *
1344 * .. code-block:: C
1345 *
1346 *     struct drm_xe_sync sync = {
1347 *         .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1348 *         .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1349 *     };
1350 *     struct drm_syncobj_create syncobj_create = { 0 };
1351 *     ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1352 *     sync.handle = syncobj_create.handle;
1353 *         ...
1354 *         use of &sync in drm_xe_exec or drm_xe_vm_bind
1355 *         ...
1356 *     struct drm_syncobj_wait wait = {
1357 *         .handles = &sync.handle,
1358 *         .timeout_nsec = INT64_MAX,
1359 *         .count_handles = 1,
1360 *         .flags = 0,
1361 *         .first_signaled = 0,
1362 *         .pad = 0,
1363 *     };
1364 *     ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1365 */
1366struct drm_xe_sync {
1367	/** @extensions: Pointer to the first extension struct, if any */
1368	__u64 extensions;
1369
1370#define DRM_XE_SYNC_TYPE_SYNCOBJ		0x0
1371#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ	0x1
1372#define DRM_XE_SYNC_TYPE_USER_FENCE		0x2
1373	/** @type: Type of the this sync object */
1374	__u32 type;
1375
1376#define DRM_XE_SYNC_FLAG_SIGNAL	(1 << 0)
1377	/** @flags: Sync Flags */
1378	__u32 flags;
1379
1380	union {
1381		/** @handle: Handle for the object */
1382		__u32 handle;
1383
1384		/**
1385		 * @addr: Address of user fence. When sync is passed in via exec
1386		 * IOCTL this is a GPU address in the VM. When sync passed in via
1387		 * VM bind IOCTL this is a user pointer. In either case, it is
1388		 * the users responsibility that this address is present and
1389		 * mapped when the user fence is signalled. Must be qword
1390		 * aligned.
1391		 */
1392		__u64 addr;
1393	};
1394
1395	/**
1396	 * @timeline_value: Input for the timeline sync object. Needs to be
1397	 * different than 0 when used with %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ.
1398	 */
1399	__u64 timeline_value;
1400
1401	/** @reserved: Reserved */
1402	__u64 reserved[2];
1403};
1404
1405/**
1406 * struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1407 *
1408 * This is an example to use @drm_xe_exec for execution of the object
1409 * at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1410 * (see example in @drm_xe_exec_queue_create). It can be synchronized
1411 * by using the example provided for @drm_xe_sync.
1412 *
1413 * .. code-block:: C
1414 *
1415 *     struct drm_xe_exec exec = {
1416 *         .exec_queue_id = exec_queue,
1417 *         .syncs = &sync,
1418 *         .num_syncs = 1,
1419 *         .address = BIND_ADDRESS,
1420 *         .num_batch_buffer = 1,
1421 *     };
1422 *     ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1423 *
1424 */
1425struct drm_xe_exec {
1426	/** @extensions: Pointer to the first extension struct, if any */
1427	__u64 extensions;
1428
1429	/** @exec_queue_id: Exec queue ID for the batch buffer */
1430	__u32 exec_queue_id;
1431
1432	/** @num_syncs: Amount of struct drm_xe_sync in array. */
1433	__u32 num_syncs;
1434
1435	/** @syncs: Pointer to struct drm_xe_sync array. */
1436	__u64 syncs;
1437
1438	/**
1439	 * @address: address of batch buffer if num_batch_buffer == 1 or an
1440	 * array of batch buffer addresses
1441	 */
1442	__u64 address;
1443
1444	/**
1445	 * @num_batch_buffer: number of batch buffer in this exec, must match
1446	 * the width of the engine
1447	 */
1448	__u16 num_batch_buffer;
1449
1450	/** @pad: MBZ */
1451	__u16 pad[3];
1452
1453	/** @reserved: Reserved */
1454	__u64 reserved[2];
1455};
1456
1457/**
1458 * struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1459 *
1460 * Wait on user fence, XE will wake-up on every HW engine interrupt in the
1461 * instances list and check if user fence is complete::
1462 *
1463 *	(*addr & MASK) OP (VALUE & MASK)
1464 *
1465 * Returns to user on user fence completion or timeout.
1466 *
1467 * The @op can be:
1468 *  - %DRM_XE_UFENCE_WAIT_OP_EQ
1469 *  - %DRM_XE_UFENCE_WAIT_OP_NEQ
1470 *  - %DRM_XE_UFENCE_WAIT_OP_GT
1471 *  - %DRM_XE_UFENCE_WAIT_OP_GTE
1472 *  - %DRM_XE_UFENCE_WAIT_OP_LT
1473 *  - %DRM_XE_UFENCE_WAIT_OP_LTE
1474 *
1475 * and the @flags can be:
1476 *  - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1477 *  - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1478 *
1479 * The @mask values can be for example:
1480 *  - 0xffu for u8
1481 *  - 0xffffu for u16
1482 *  - 0xffffffffu for u32
1483 *  - 0xffffffffffffffffu for u64
1484 */
1485struct drm_xe_wait_user_fence {
1486	/** @extensions: Pointer to the first extension struct, if any */
1487	__u64 extensions;
1488
1489	/**
1490	 * @addr: user pointer address to wait on, must qword aligned
1491	 */
1492	__u64 addr;
1493
1494#define DRM_XE_UFENCE_WAIT_OP_EQ	0x0
1495#define DRM_XE_UFENCE_WAIT_OP_NEQ	0x1
1496#define DRM_XE_UFENCE_WAIT_OP_GT	0x2
1497#define DRM_XE_UFENCE_WAIT_OP_GTE	0x3
1498#define DRM_XE_UFENCE_WAIT_OP_LT	0x4
1499#define DRM_XE_UFENCE_WAIT_OP_LTE	0x5
1500	/** @op: wait operation (type of comparison) */
1501	__u16 op;
1502
1503#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME	(1 << 0)
1504	/** @flags: wait flags */
1505	__u16 flags;
1506
1507	/** @pad: MBZ */
1508	__u32 pad;
1509
1510	/** @value: compare value */
1511	__u64 value;
1512
1513	/** @mask: comparison mask */
1514	__u64 mask;
1515
1516	/**
1517	 * @timeout: how long to wait before bailing, value in nanoseconds.
1518	 * Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1519	 * it contains timeout expressed in nanoseconds to wait (fence will
1520	 * expire at now() + timeout).
1521	 * When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1522	 * will end at timeout (uses system MONOTONIC_CLOCK).
1523	 * Passing negative timeout leads to neverending wait.
1524	 *
1525	 * On relative timeout this value is updated with timeout left
1526	 * (for restarting the call in case of signal delivery).
1527	 * On absolute timeout this value stays intact (restarted call still
1528	 * expire at the same point of time).
1529	 */
1530	__s64 timeout;
1531
1532	/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1533	__u32 exec_queue_id;
1534
1535	/** @pad2: MBZ */
1536	__u32 pad2;
1537
1538	/** @reserved: Reserved */
1539	__u64 reserved[2];
1540};
1541
1542/**
1543 * enum drm_xe_observation_type - Observation stream types
1544 */
1545enum drm_xe_observation_type {
1546	/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1547	DRM_XE_OBSERVATION_TYPE_OA,
1548	/** @DRM_XE_OBSERVATION_TYPE_EU_STALL: EU stall sampling observation stream type */
1549	DRM_XE_OBSERVATION_TYPE_EU_STALL,
1550};
1551
1552/**
1553 * enum drm_xe_observation_op - Observation stream ops
1554 */
1555enum drm_xe_observation_op {
1556	/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1557	DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1558
1559	/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1560	DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1561
1562	/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1563	DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1564};
1565
1566/**
1567 * struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1568 *
1569 * The observation layer enables multiplexing observation streams of
1570 * multiple types. The actual params for a particular stream operation are
1571 * supplied via the @param pointer (use __copy_from_user to get these
1572 * params).
1573 */
1574struct drm_xe_observation_param {
1575	/** @extensions: Pointer to the first extension struct, if any */
1576	__u64 extensions;
1577	/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1578	__u64 observation_type;
1579	/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1580	__u64 observation_op;
1581	/** @param: Pointer to actual stream params */
1582	__u64 param;
1583};
1584
1585/**
1586 * enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1587 *
1588 * Information exchanged between userspace and kernel for observation fd
1589 * ioctl's is stream type specific
1590 */
1591enum drm_xe_observation_ioctls {
1592	/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1593	DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1594
1595	/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1596	DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1597
1598	/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1599	DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1600
1601	/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1602	DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1603
1604	/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1605	DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1606};
1607
1608/**
1609 * enum drm_xe_oa_unit_type - OA unit types
1610 */
1611enum drm_xe_oa_unit_type {
1612	/**
1613	 * @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1614	 * sub-types of OAG. For OAR/OAC, use OAG.
1615	 */
1616	DRM_XE_OA_UNIT_TYPE_OAG,
1617
1618	/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1619	DRM_XE_OA_UNIT_TYPE_OAM,
1620
1621	/** @DRM_XE_OA_UNIT_TYPE_OAM_SAG: OAM_SAG OA unit */
1622	DRM_XE_OA_UNIT_TYPE_OAM_SAG,
1623};
1624
1625/**
1626 * struct drm_xe_oa_unit - describe OA unit
1627 */
1628struct drm_xe_oa_unit {
1629	/** @extensions: Pointer to the first extension struct, if any */
1630	__u64 extensions;
1631
1632	/** @oa_unit_id: OA unit ID */
1633	__u32 oa_unit_id;
1634
1635	/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1636	__u32 oa_unit_type;
1637
1638	/** @capabilities: OA capabilities bit-mask */
1639	__u64 capabilities;
1640#define DRM_XE_OA_CAPS_BASE		(1 << 0)
1641#define DRM_XE_OA_CAPS_SYNCS		(1 << 1)
1642#define DRM_XE_OA_CAPS_OA_BUFFER_SIZE	(1 << 2)
1643#define DRM_XE_OA_CAPS_WAIT_NUM_REPORTS	(1 << 3)
1644#define DRM_XE_OA_CAPS_OAM		(1 << 4)
1645
1646	/** @oa_timestamp_freq: OA timestamp freq */
1647	__u64 oa_timestamp_freq;
1648
1649	/** @reserved: MBZ */
1650	__u64 reserved[4];
1651
1652	/** @num_engines: number of engines in @eci array */
1653	__u64 num_engines;
1654
1655	/** @eci: engines attached to this OA unit */
1656	struct drm_xe_engine_class_instance eci[];
1657};
1658
1659/**
1660 * struct drm_xe_query_oa_units - describe OA units
1661 *
1662 * If a query is made with a struct drm_xe_device_query where .query
1663 * is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1664 * drm_xe_query_oa_units in .data.
1665 *
1666 * OA unit properties for all OA units can be accessed using a code block
1667 * such as the one below:
1668 *
1669 * .. code-block:: C
1670 *
1671 *	struct drm_xe_query_oa_units *qoa;
1672 *	struct drm_xe_oa_unit *oau;
1673 *	u8 *poau;
1674 *
1675 *	// malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1676 *	poau = (u8 *)&qoa->oa_units[0];
1677 *	for (int i = 0; i < qoa->num_oa_units; i++) {
1678 *		oau = (struct drm_xe_oa_unit *)poau;
1679 *		// Access 'struct drm_xe_oa_unit' fields here
1680 *		poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1681 *	}
1682 */
1683struct drm_xe_query_oa_units {
1684	/** @extensions: Pointer to the first extension struct, if any */
1685	__u64 extensions;
1686	/** @num_oa_units: number of OA units returned in oau[] */
1687	__u32 num_oa_units;
1688	/** @pad: MBZ */
1689	__u32 pad;
1690	/**
1691	 * @oa_units: struct @drm_xe_oa_unit array returned for this device.
1692	 * Written below as a u64 array to avoid problems with nested flexible
1693	 * arrays with some compilers
1694	 */
1695	__u64 oa_units[];
1696};
1697
1698/**
1699 * enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1700 * 52198/60942
1701 */
1702enum drm_xe_oa_format_type {
1703	/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1704	DRM_XE_OA_FMT_TYPE_OAG,
1705	/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1706	DRM_XE_OA_FMT_TYPE_OAR,
1707	/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1708	DRM_XE_OA_FMT_TYPE_OAM,
1709	/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1710	DRM_XE_OA_FMT_TYPE_OAC,
1711	/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1712	DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1713	/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1714	DRM_XE_OA_FMT_TYPE_PEC,
1715};
1716
1717/**
1718 * enum drm_xe_oa_property_id - OA stream property id's
1719 *
1720 * Stream params are specified as a chain of @drm_xe_ext_set_property
1721 * struct's, with @property values from enum @drm_xe_oa_property_id and
1722 * @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1723 * @param field in struct @drm_xe_observation_param points to the first
1724 * @drm_xe_ext_set_property struct.
1725 *
1726 * Exactly the same mechanism is also used for stream reconfiguration using the
1727 * @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1728 * subset of properties below can be specified for stream reconfiguration.
1729 */
1730enum drm_xe_oa_property_id {
1731#define DRM_XE_OA_EXTENSION_SET_PROPERTY	0
1732	/**
1733	 * @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1734	 * the OA stream, see @oa_unit_id in 'struct
1735	 * drm_xe_query_oa_units'. Defaults to 0 if not provided.
1736	 */
1737	DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1738
1739	/**
1740	 * @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1741	 * OA unit reports or stream samples in a global buffer attached to an
1742	 * OA unit.
1743	 */
1744	DRM_XE_OA_PROPERTY_SAMPLE_OA,
1745
1746	/**
1747	 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1748	 * reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1749	 */
1750	DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1751
1752	/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1753	DRM_XE_OA_PROPERTY_OA_FORMAT,
1754	/*
1755	 * OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1756	 * in terms of the following quantities: a. enum @drm_xe_oa_format_type
1757	 * b. Counter select c. Counter size and d. BC report. Also refer to the
1758	 * oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1759	 */
1760#define DRM_XE_OA_FORMAT_MASK_FMT_TYPE		(0xffu << 0)
1761#define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL	(0xffu << 8)
1762#define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE	(0xffu << 16)
1763#define DRM_XE_OA_FORMAT_MASK_BC_REPORT		(0xffu << 24)
1764
1765	/**
1766	 * @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1767	 * sampling with sampling frequency proportional to 2^(period_exponent + 1)
1768	 */
1769	DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1770
1771	/**
1772	 * @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1773	 * stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1774	 */
1775	DRM_XE_OA_PROPERTY_OA_DISABLED,
1776
1777	/**
1778	 * @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1779	 * @exec_queue_id. OA queries can be executed on this exec queue.
1780	 */
1781	DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1782
1783	/**
1784	 * @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1785	 * pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1786	 */
1787	DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1788
1789	/**
1790	 * @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1791	 * to be disabled for the stream exec queue.
1792	 */
1793	DRM_XE_OA_PROPERTY_NO_PREEMPT,
1794
1795	/**
1796	 * @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
1797	 * specified in @DRM_XE_OA_PROPERTY_SYNCS
1798	 */
1799	DRM_XE_OA_PROPERTY_NUM_SYNCS,
1800
1801	/**
1802	 * @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
1803	 * with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
1804	 * configuration will wait till input fences signal. Output fences
1805	 * will signal after the new OA configuration takes effect. For
1806	 * @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
1807	 * to the VM bind case.
1808	 */
1809	DRM_XE_OA_PROPERTY_SYNCS,
1810
1811	/**
1812	 * @DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE: Size of OA buffer to be
1813	 * allocated by the driver in bytes. Supported sizes are powers of
1814	 * 2 from 128 KiB to 128 MiB. When not specified, a 16 MiB OA
1815	 * buffer is allocated by default.
1816	 */
1817	DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE,
1818
1819	/**
1820	 * @DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS: Number of reports to wait
1821	 * for before unblocking poll or read
1822	 */
1823	DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS,
1824};
1825
1826/**
1827 * struct drm_xe_oa_config - OA metric configuration
1828 *
1829 * Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1830 * particular config can be specified when opening an OA stream using
1831 * @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1832 */
1833struct drm_xe_oa_config {
1834	/** @extensions: Pointer to the first extension struct, if any */
1835	__u64 extensions;
1836
1837	/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1838	char uuid[36];
1839
1840	/** @n_regs: Number of regs in @regs_ptr */
1841	__u32 n_regs;
1842
1843	/**
1844	 * @regs_ptr: Pointer to (register address, value) pairs for OA config
1845	 * registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1846	 */
1847	__u64 regs_ptr;
1848};
1849
1850/**
1851 * struct drm_xe_oa_stream_status - OA stream status returned from
1852 * @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1853 * call the ioctl to query stream status in response to EIO errno from
1854 * observation fd read().
1855 */
1856struct drm_xe_oa_stream_status {
1857	/** @extensions: Pointer to the first extension struct, if any */
1858	__u64 extensions;
1859
1860	/** @oa_status: OA stream status (see Bspec 46717/61226) */
1861	__u64 oa_status;
1862#define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL		(1 << 3)
1863#define DRM_XE_OASTATUS_COUNTER_OVERFLOW	(1 << 2)
1864#define DRM_XE_OASTATUS_BUFFER_OVERFLOW		(1 << 1)
1865#define DRM_XE_OASTATUS_REPORT_LOST		(1 << 0)
1866
1867	/** @reserved: reserved for future use */
1868	__u64 reserved[3];
1869};
1870
1871/**
1872 * struct drm_xe_oa_stream_info - OA stream info returned from
1873 * @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1874 */
1875struct drm_xe_oa_stream_info {
1876	/** @extensions: Pointer to the first extension struct, if any */
1877	__u64 extensions;
1878
1879	/** @oa_buf_size: OA buffer size */
1880	__u64 oa_buf_size;
1881
1882	/** @reserved: reserved for future use */
1883	__u64 reserved[3];
1884};
1885
1886/**
1887 * enum drm_xe_pxp_session_type - Supported PXP session types.
1888 *
1889 * We currently only support HWDRM sessions, which are used for protected
1890 * content that ends up being displayed, but the HW supports multiple types, so
1891 * we might extend support in the future.
1892 */
1893enum drm_xe_pxp_session_type {
1894	/** @DRM_XE_PXP_TYPE_NONE: PXP not used */
1895	DRM_XE_PXP_TYPE_NONE = 0,
1896	/**
1897	 * @DRM_XE_PXP_TYPE_HWDRM: HWDRM sessions are used for content that ends
1898	 * up on the display.
1899	 */
1900	DRM_XE_PXP_TYPE_HWDRM = 1,
1901};
1902
1903/* ID of the protected content session managed by Xe when PXP is active */
1904#define DRM_XE_PXP_HWDRM_DEFAULT_SESSION 0xf
1905
1906/**
1907 * enum drm_xe_eu_stall_property_id - EU stall sampling input property ids.
1908 *
1909 * These properties are passed to the driver at open as a chain of
1910 * @drm_xe_ext_set_property structures with @property set to these
1911 * properties' enums and @value set to the corresponding values of these
1912 * properties. @drm_xe_user_extension base.name should be set to
1913 * @DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY.
1914 *
1915 * With the file descriptor obtained from open, user space must enable
1916 * the EU stall stream fd with @DRM_XE_OBSERVATION_IOCTL_ENABLE before
1917 * calling read(). EIO errno from read() indicates HW dropped data
1918 * due to full buffer.
1919 */
1920enum drm_xe_eu_stall_property_id {
1921#define DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY		0
1922	/**
1923	 * @DRM_XE_EU_STALL_PROP_GT_ID: @gt_id of the GT on which
1924	 * EU stall data will be captured.
1925	 */
1926	DRM_XE_EU_STALL_PROP_GT_ID = 1,
1927
1928	/**
1929	 * @DRM_XE_EU_STALL_PROP_SAMPLE_RATE: Sampling rate in
1930	 * GPU cycles from @sampling_rates in struct @drm_xe_query_eu_stall
1931	 */
1932	DRM_XE_EU_STALL_PROP_SAMPLE_RATE,
1933
1934	/**
1935	 * @DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS: Minimum number of
1936	 * EU stall data reports to be present in the kernel buffer
1937	 * before unblocking a blocked poll or read.
1938	 */
1939	DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS,
1940};
1941
1942/**
1943 * struct drm_xe_query_eu_stall - Information about EU stall sampling.
1944 *
1945 * If a query is made with a struct @drm_xe_device_query where .query
1946 * is equal to @DRM_XE_DEVICE_QUERY_EU_STALL, then the reply uses
1947 * struct @drm_xe_query_eu_stall in .data.
1948 */
1949struct drm_xe_query_eu_stall {
1950	/** @extensions: Pointer to the first extension struct, if any */
1951	__u64 extensions;
1952
1953	/** @capabilities: EU stall capabilities bit-mask */
1954	__u64 capabilities;
1955#define DRM_XE_EU_STALL_CAPS_BASE		(1 << 0)
1956
1957	/** @record_size: size of each EU stall data record */
1958	__u64 record_size;
1959
1960	/** @per_xecore_buf_size: internal per XeCore buffer size */
1961	__u64 per_xecore_buf_size;
1962
1963	/** @reserved: Reserved */
1964	__u64 reserved[5];
1965
1966	/** @num_sampling_rates: Number of sampling rates in @sampling_rates array */
1967	__u64 num_sampling_rates;
1968
1969	/**
1970	 * @sampling_rates: Flexible array of sampling rates
1971	 * sorted in the fastest to slowest order.
1972	 * Sampling rates are specified in GPU clock cycles.
1973	 */
1974	__u64 sampling_rates[];
1975};
1976
1977#if defined(__cplusplus)
1978}
1979#endif
1980
1981#endif /* _XE_DRM_H_ */