master
   1/*
   2 * Copyright 2011 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#ifndef DRM_FOURCC_H
  25#define DRM_FOURCC_H
  26
  27#include "drm.h"
  28
  29#if defined(__cplusplus)
  30extern "C" {
  31#endif
  32
  33/**
  34 * DOC: overview
  35 *
  36 * In the DRM subsystem, framebuffer pixel formats are described using the
  37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
  38 * fourcc code, a Format Modifier may optionally be provided, in order to
  39 * further describe the buffer's format - for example tiling or compression.
  40 *
  41 * Format Modifiers
  42 * ----------------
  43 *
  44 * Format modifiers are used in conjunction with a fourcc code, forming a
  45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
  46 * format and data layout of the buffer, and should be the only way to describe
  47 * that particular buffer.
  48 *
  49 * Having multiple fourcc:modifier pairs which describe the same layout should
  50 * be avoided, as such aliases run the risk of different drivers exposing
  51 * different names for the same data format, forcing userspace to understand
  52 * that they are aliases.
  53 *
  54 * Format modifiers may change any property of the buffer, including the number
  55 * of planes and/or the required allocation size. Format modifiers are
  56 * vendor-namespaced, and as such the relationship between a fourcc code and a
  57 * modifier is specific to the modifier being used. For example, some modifiers
  58 * may preserve meaning - such as number of planes - from the fourcc code,
  59 * whereas others may not.
  60 *
  61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
  62 * match only a single modifier. A modifier must not be a subset of layouts of
  63 * another modifier. For instance, it's incorrect to encode pitch alignment in
  64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
  65 * aligned modifier. That said, modifiers can have implicit minimal
  66 * requirements.
  67 *
  68 * For modifiers where the combination of fourcc code and modifier can alias,
  69 * a canonical pair needs to be defined and used by all drivers. Preferred
  70 * combinations are also encouraged where all combinations might lead to
  71 * confusion and unnecessarily reduced interoperability. An example for the
  72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
  73 *
  74 * There are two kinds of modifier users:
  75 *
  76 * - Kernel and user-space drivers: for drivers it's important that modifiers
  77 *   don't alias, otherwise two drivers might support the same format but use
  78 *   different aliases, preventing them from sharing buffers in an efficient
  79 *   format.
  80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
  81 *   see modifiers as opaque tokens they can check for equality and intersect.
  82 *   These users mustn't need to know to reason about the modifier value
  83 *   (i.e. they are not expected to extract information out of the modifier).
  84 *
  85 * Vendors should document their modifier usage in as much detail as
  86 * possible, to ensure maximum compatibility across devices, drivers and
  87 * applications.
  88 *
  89 * The authoritative list of format modifier codes is found in
  90 * `include/uapi/drm/drm_fourcc.h`
  91 *
  92 * Open Source User Waiver
  93 * -----------------------
  94 *
  95 * Because this is the authoritative source for pixel formats and modifiers
  96 * referenced by GL, Vulkan extensions and other standards and hence used both
  97 * by open source and closed source driver stacks, the usual requirement for an
  98 * upstream in-kernel or open source userspace user does not apply.
  99 *
 100 * To ensure, as much as feasible, compatibility across stacks and avoid
 101 * confusion with incompatible enumerations stakeholders for all relevant driver
 102 * stacks should approve additions.
 103 */
 104
 105#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
 106				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
 107
 108#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
 109
 110/* Reserve 0 for the invalid format specifier */
 111#define DRM_FORMAT_INVALID	0
 112
 113/* color index */
 114#define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
 115#define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
 116#define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
 117#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
 118
 119/* 1 bpp Darkness (inverse relationship between channel value and brightness) */
 120#define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
 121
 122/* 2 bpp Darkness (inverse relationship between channel value and brightness) */
 123#define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
 124
 125/* 4 bpp Darkness (inverse relationship between channel value and brightness) */
 126#define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
 127
 128/* 8 bpp Darkness (inverse relationship between channel value and brightness) */
 129#define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
 130
 131/* 1 bpp Red (direct relationship between channel value and brightness) */
 132#define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
 133
 134/* 2 bpp Red (direct relationship between channel value and brightness) */
 135#define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
 136
 137/* 4 bpp Red (direct relationship between channel value and brightness) */
 138#define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
 139
 140/* 8 bpp Red (direct relationship between channel value and brightness) */
 141#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
 142
 143/* 10 bpp Red (direct relationship between channel value and brightness) */
 144#define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
 145
 146/* 12 bpp Red (direct relationship between channel value and brightness) */
 147#define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
 148
 149/* 16 bpp Red (direct relationship between channel value and brightness) */
 150#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
 151
 152/* 16 bpp RG */
 153#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
 154#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
 155
 156/* 32 bpp RG */
 157#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
 158#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
 159
 160/* 8 bpp RGB */
 161#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
 162#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
 163
 164/* 16 bpp RGB */
 165#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
 166#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
 167#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
 168#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
 169
 170#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
 171#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
 172#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
 173#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
 174
 175#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
 176#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
 177#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
 178#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
 179
 180#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
 181#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
 182#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
 183#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
 184
 185#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
 186#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
 187
 188/* 24 bpp RGB */
 189#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
 190#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
 191
 192/* 32 bpp RGB */
 193#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
 194#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
 195#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
 196#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
 197
 198#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
 199#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
 200#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
 201#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
 202
 203#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
 204#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
 205#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
 206#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
 207
 208#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
 209#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
 210#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
 211#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
 212
 213/* 48 bpp RGB */
 214#define DRM_FORMAT_RGB161616 fourcc_code('R', 'G', '4', '8') /* [47:0] R:G:B 16:16:16 little endian */
 215#define DRM_FORMAT_BGR161616 fourcc_code('B', 'G', '4', '8') /* [47:0] B:G:R 16:16:16 little endian */
 216
 217/* 64 bpp RGB */
 218#define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 219#define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 220
 221#define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 222#define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 223
 224/*
 225 * Half-Floating point - 16b/component
 226 * IEEE 754-2008 binary16 half-precision float
 227 * [15:0] sign:exponent:mantissa 1:5:10
 228 */
 229#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
 230#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
 231
 232#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
 233#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
 234
 235#define DRM_FORMAT_R16F          fourcc_code('R', ' ', ' ', 'H') /* [15:0] R 16 little endian */
 236#define DRM_FORMAT_GR1616F       fourcc_code('G', 'R', ' ', 'H') /* [31:0] G:R 16:16 little endian */
 237#define DRM_FORMAT_BGR161616F    fourcc_code('B', 'G', 'R', 'H') /* [47:0] B:G:R 16:16:16 little endian */
 238
 239/*
 240 * Floating point - 32b/component
 241 * IEEE 754-2008 binary32 float
 242 * [31:0] sign:exponent:mantissa 1:8:23
 243 */
 244#define DRM_FORMAT_R32F          fourcc_code('R', ' ', ' ', 'F') /* [31:0] R 32 little endian */
 245#define DRM_FORMAT_GR3232F       fourcc_code('G', 'R', ' ', 'F') /* [63:0] R:G 32:32 little endian */
 246#define DRM_FORMAT_BGR323232F    fourcc_code('B', 'G', 'R', 'F') /* [95:0] R:G:B 32:32:32 little endian */
 247#define DRM_FORMAT_ABGR32323232F fourcc_code('A', 'B', '8', 'F') /* [127:0] R:G:B:A 32:32:32:32 little endian */
 248
 249/*
 250 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
 251 * of unused padding per component:
 252 */
 253#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
 254
 255/* packed YCbCr */
 256#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
 257#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
 258#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
 259#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
 260
 261#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
 262#define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
 263#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
 264#define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
 265#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
 266#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
 267
 268/*
 269 * packed Y2xx indicate for each component, xx valid data occupy msb
 270 * 16-xx padding occupy lsb
 271 */
 272#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
 273#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
 274#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
 275
 276/*
 277 * packed Y4xx indicate for each component, xx valid data occupy msb
 278 * 16-xx padding occupy lsb except Y410
 279 */
 280#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
 281#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 282#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
 283
 284#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
 285#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
 286#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
 287
 288/*
 289 * packed YCbCr420 2x2 tiled formats
 290 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
 291 */
 292/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 293#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
 294/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
 295#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
 296
 297/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 298#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
 299/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
 300#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
 301
 302/*
 303 * 1-plane YUV 4:2:0
 304 * In these formats, the component ordering is specified (Y, followed by U
 305 * then V), but the exact Linear layout is undefined.
 306 * These formats can only be used with a non-Linear modifier.
 307 */
 308#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
 309#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
 310
 311/*
 312 * 2 plane RGB + A
 313 * index 0 = RGB plane, same format as the corresponding non _A8 format has
 314 * index 1 = A plane, [7:0] A
 315 */
 316#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
 317#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
 318#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
 319#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
 320#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
 321#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
 322#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
 323#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
 324
 325/*
 326 * 2 plane YCbCr
 327 * index 0 = Y plane, [7:0] Y
 328 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
 329 * or
 330 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
 331 */
 332#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
 333#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
 334#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
 335#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
 336#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
 337#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
 338/*
 339 * 2 plane YCbCr
 340 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
 341 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
 342 */
 343#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
 344#define DRM_FORMAT_NV20		fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
 345#define DRM_FORMAT_NV30		fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
 346
 347/*
 348 * 2 plane YCbCr MSB aligned
 349 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 350 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 351 */
 352#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
 353
 354/*
 355 * 2 plane YCbCr MSB aligned
 356 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
 357 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
 358 */
 359#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
 360
 361/*
 362 * 2 plane YCbCr MSB aligned
 363 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
 364 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
 365 */
 366#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
 367
 368/*
 369 * 2 plane YCbCr MSB aligned
 370 * index 0 = Y plane, [15:0] Y little endian
 371 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
 372 */
 373#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
 374
 375/* 2 plane YCbCr420.
 376 * 3 10 bit components and 2 padding bits packed into 4 bytes.
 377 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
 378 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
 379 */
 380#define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
 381
 382/* 3 plane non-subsampled (444) YCbCr
 383 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 384 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 385 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
 386 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
 387 */
 388#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
 389
 390/* 3 plane non-subsampled (444) YCrCb
 391 * 16 bits per component, but only 10 bits are used and 6 bits are padded
 392 * index 0: Y plane, [15:0] Y:x [10:6] little endian
 393 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
 394 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
 395 */
 396#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
 397
 398/*
 399 * 3 plane YCbCr LSB aligned
 400 * In order to use these formats in a similar fashion to MSB aligned ones
 401 * implementation can multiply the values by 2^6=64. For that reason the padding
 402 * must only contain zeros.
 403 * index 0 = Y plane, [15:0] z:Y [6:10] little endian
 404 * index 1 = Cr plane, [15:0] z:Cr [6:10] little endian
 405 * index 2 = Cb plane, [15:0] z:Cb [6:10] little endian
 406 */
 407#define DRM_FORMAT_S010	fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
 408#define DRM_FORMAT_S210	fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
 409#define DRM_FORMAT_S410	fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */
 410
 411/*
 412 * 3 plane YCbCr LSB aligned
 413 * In order to use these formats in a similar fashion to MSB aligned ones
 414 * implementation can multiply the values by 2^4=16. For that reason the padding
 415 * must only contain zeros.
 416 * index 0 = Y plane, [15:0] z:Y [4:12] little endian
 417 * index 1 = Cr plane, [15:0] z:Cr [4:12] little endian
 418 * index 2 = Cb plane, [15:0] z:Cb [4:12] little endian
 419 */
 420#define DRM_FORMAT_S012	fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
 421#define DRM_FORMAT_S212	fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
 422#define DRM_FORMAT_S412	fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */
 423
 424/*
 425 * 3 plane YCbCr
 426 * index 0 = Y plane, [15:0] Y little endian
 427 * index 1 = Cr plane, [15:0] Cr little endian
 428 * index 2 = Cb plane, [15:0] Cb little endian
 429 */
 430#define DRM_FORMAT_S016	fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
 431#define DRM_FORMAT_S216	fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
 432#define DRM_FORMAT_S416	fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */
 433
 434/*
 435 * 3 plane YCbCr
 436 * index 0: Y plane, [7:0] Y
 437 * index 1: Cb plane, [7:0] Cb
 438 * index 2: Cr plane, [7:0] Cr
 439 * or
 440 * index 1: Cr plane, [7:0] Cr
 441 * index 2: Cb plane, [7:0] Cb
 442 */
 443#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
 444#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
 445#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
 446#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
 447#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
 448#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
 449#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
 450#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
 451#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
 452#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
 453
 454
 455/*
 456 * Format Modifiers:
 457 *
 458 * Format modifiers describe, typically, a re-ordering or modification
 459 * of the data in a plane of an FB.  This can be used to express tiled/
 460 * swizzled formats, or compression, or a combination of the two.
 461 *
 462 * The upper 8 bits of the format modifier are a vendor-id as assigned
 463 * below.  The lower 56 bits are assigned as vendor sees fit.
 464 */
 465
 466/* Vendor Ids: */
 467#define DRM_FORMAT_MOD_VENDOR_NONE    0
 468#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
 469#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
 470#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
 471#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
 472#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
 473#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
 474#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
 475#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
 476#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
 477#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
 478#define DRM_FORMAT_MOD_VENDOR_MTK     0x0b
 479#define DRM_FORMAT_MOD_VENDOR_APPLE   0x0c
 480
 481/* add more to the end as needed */
 482
 483#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
 484
 485#define fourcc_mod_get_vendor(modifier) \
 486	(((modifier) >> 56) & 0xff)
 487
 488#define fourcc_mod_is_vendor(modifier, vendor) \
 489	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
 490
 491#define fourcc_mod_code(vendor, val) \
 492	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
 493
 494/*
 495 * Format Modifier tokens:
 496 *
 497 * When adding a new token please document the layout with a code comment,
 498 * similar to the fourcc codes above. drm_fourcc.h is considered the
 499 * authoritative source for all of these.
 500 *
 501 * Generic modifier names:
 502 *
 503 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
 504 * for layouts which are common across multiple vendors. To preserve
 505 * compatibility, in cases where a vendor-specific definition already exists and
 506 * a generic name for it is desired, the common name is a purely symbolic alias
 507 * and must use the same numerical value as the original definition.
 508 *
 509 * Note that generic names should only be used for modifiers which describe
 510 * generic layouts (such as pixel re-ordering), which may have
 511 * independently-developed support across multiple vendors.
 512 *
 513 * In future cases where a generic layout is identified before merging with a
 514 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
 515 * 'NONE' could be considered. This should only be for obvious, exceptional
 516 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
 517 * apply to a single vendor.
 518 *
 519 * Generic names should not be used for cases where multiple hardware vendors
 520 * have implementations of the same standardised compression scheme (such as
 521 * AFBC). In those cases, all implementations should use the same format
 522 * modifier(s), reflecting the vendor of the standard.
 523 */
 524
 525#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
 526
 527/*
 528 * Invalid Modifier
 529 *
 530 * This modifier can be used as a sentinel to terminate the format modifiers
 531 * list, or to initialize a variable with an invalid modifier. It might also be
 532 * used to report an error back to userspace for certain APIs.
 533 */
 534#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
 535
 536/*
 537 * Linear Layout
 538 *
 539 * Just plain linear layout. Note that this is different from no specifying any
 540 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
 541 * which tells the driver to also take driver-internal information into account
 542 * and so might actually result in a tiled framebuffer.
 543 */
 544#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
 545
 546/*
 547 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
 548 *
 549 * The "none" format modifier doesn't actually mean that the modifier is
 550 * implicit, instead it means that the layout is linear. Whether modifiers are
 551 * used is out-of-band information carried in an API-specific way (e.g. in a
 552 * flag for drm_mode_fb_cmd2).
 553 */
 554#define DRM_FORMAT_MOD_NONE	0
 555
 556/* Intel framebuffer modifiers */
 557
 558/*
 559 * Intel X-tiling layout
 560 *
 561 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 562 * in row-major layout. Within the tile bytes are laid out row-major, with
 563 * a platform-dependent stride. On top of that the memory can apply
 564 * platform-depending swizzling of some higher address bits into bit6.
 565 *
 566 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 567 * On earlier platforms the is highly platforms specific and not useful for
 568 * cross-driver sharing. It exists since on a given platform it does uniquely
 569 * identify the layout in a simple way for i915-specific userspace, which
 570 * facilitated conversion of userspace to modifiers. Additionally the exact
 571 * format on some really old platforms is not known.
 572 */
 573#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
 574
 575/*
 576 * Intel Y-tiling layout
 577 *
 578 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
 579 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
 580 * chunks column-major, with a platform-dependent height. On top of that the
 581 * memory can apply platform-depending swizzling of some higher address bits
 582 * into bit6.
 583 *
 584 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
 585 * On earlier platforms the is highly platforms specific and not useful for
 586 * cross-driver sharing. It exists since on a given platform it does uniquely
 587 * identify the layout in a simple way for i915-specific userspace, which
 588 * facilitated conversion of userspace to modifiers. Additionally the exact
 589 * format on some really old platforms is not known.
 590 */
 591#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
 592
 593/*
 594 * Intel Yf-tiling layout
 595 *
 596 * This is a tiled layout using 4Kb tiles in row-major layout.
 597 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
 598 * are arranged in four groups (two wide, two high) with column-major layout.
 599 * Each group therefore consists out of four 256 byte units, which are also laid
 600 * out as 2x2 column-major.
 601 * 256 byte units are made out of four 64 byte blocks of pixels, producing
 602 * either a square block or a 2:1 unit.
 603 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
 604 * in pixel depends on the pixel depth.
 605 */
 606#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
 607
 608/*
 609 * Intel color control surface (CCS) for render compression
 610 *
 611 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
 612 * The main surface will be plane index 0 and must be Y/Yf-tiled,
 613 * the CCS will be plane index 1.
 614 *
 615 * Each CCS tile matches a 1024x512 pixel area of the main surface.
 616 * To match certain aspects of the 3D hardware the CCS is
 617 * considered to be made up of normal 128Bx32 Y tiles, Thus
 618 * the CCS pitch must be specified in multiples of 128 bytes.
 619 *
 620 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
 621 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
 622 * But that fact is not relevant unless the memory is accessed
 623 * directly.
 624 */
 625#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
 626#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
 627
 628/*
 629 * Intel color control surfaces (CCS) for Gen-12 render compression.
 630 *
 631 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 632 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 633 * main surface. In other words, 4 bits in CCS map to a main surface cache
 634 * line pair. The main surface pitch is required to be a multiple of four
 635 * Y-tile widths.
 636 */
 637#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
 638
 639/*
 640 * Intel color control surfaces (CCS) for Gen-12 media compression
 641 *
 642 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
 643 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 644 * main surface. In other words, 4 bits in CCS map to a main surface cache
 645 * line pair. The main surface pitch is required to be a multiple of four
 646 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
 647 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
 648 * planes 2 and 3 for the respective CCS.
 649 */
 650#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
 651
 652/*
 653 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
 654 * compression.
 655 *
 656 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
 657 * and at index 1. The clear color is stored at index 2, and the pitch should
 658 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
 659 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
 660 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
 661 * the converted clear color of size 64 bits. The first 32 bits store the Lower
 662 * Converted Clear Color value and the next 32 bits store the Higher Converted
 663 * Clear Color value when applicable. The Converted Clear Color values are
 664 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
 665 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
 666 * corresponds to an area of 4x1 tiles in the main surface. The main surface
 667 * pitch is required to be a multiple of 4 tile widths.
 668 */
 669#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
 670
 671/*
 672 * Intel Tile 4 layout
 673 *
 674 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
 675 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
 676 * only differs from Tile Y at the 256B granularity in between. At this
 677 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
 678 * of 64B x 8 rows.
 679 */
 680#define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
 681
 682/*
 683 * Intel color control surfaces (CCS) for DG2 render compression.
 684 *
 685 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
 686 * outside of the GEM object in a reserved memory area dedicated for the
 687 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
 688 * main surface pitch is required to be a multiple of four Tile 4 widths.
 689 */
 690#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
 691
 692/*
 693 * Intel color control surfaces (CCS) for DG2 media compression.
 694 *
 695 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
 696 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
 697 * 0 and 1, respectively. The CCS for all planes are stored outside of the
 698 * GEM object in a reserved memory area dedicated for the storage of the
 699 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
 700 * pitch is required to be a multiple of four Tile 4 widths.
 701 */
 702#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
 703
 704/*
 705 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
 706 *
 707 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
 708 * outside of the GEM object in a reserved memory area dedicated for the
 709 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
 710 * main surface pitch is required to be a multiple of four Tile 4 widths. The
 711 * clear color is stored at plane index 1 and the pitch should be 64 bytes
 712 * aligned. The format of the 256 bits of clear color data matches the one used
 713 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
 714 * for details.
 715 */
 716#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
 717
 718/*
 719 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
 720 *
 721 * The main surface is tile4 and at plane index 0, the CCS is linear and
 722 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 723 * main surface. In other words, 4 bits in CCS map to a main surface cache
 724 * line pair. The main surface pitch is required to be a multiple of four
 725 * tile4 widths.
 726 */
 727#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
 728
 729/*
 730 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
 731 *
 732 * The main surface is tile4 and at plane index 0, the CCS is linear and
 733 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
 734 * main surface. In other words, 4 bits in CCS map to a main surface cache
 735 * line pair. The main surface pitch is required to be a multiple of four
 736 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
 737 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
 738 * planes 2 and 3 for the respective CCS.
 739 */
 740#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
 741
 742/*
 743 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
 744 * compression.
 745 *
 746 * The main surface is tile4 and is at plane index 0 whereas CCS is linear
 747 * and at index 1. The clear color is stored at index 2, and the pitch should
 748 * be ignored. The clear color structure is 256 bits. The first 128 bits
 749 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
 750 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
 751 * the converted clear color of size 64 bits. The first 32 bits store the Lower
 752 * Converted Clear Color value and the next 32 bits store the Higher Converted
 753 * Clear Color value when applicable. The Converted Clear Color values are
 754 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
 755 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
 756 * corresponds to an area of 4x1 tiles in the main surface. The main surface
 757 * pitch is required to be a multiple of 4 tile widths.
 758 */
 759#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
 760
 761/*
 762 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
 763 * on integrated graphics
 764 *
 765 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
 766 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
 767 * 0 and 1, respectively. The CCS for all planes are stored outside of the
 768 * GEM object in a reserved memory area dedicated for the storage of the
 769 * CCS data for all compressible GEM objects.
 770 */
 771#define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
 772
 773/*
 774 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
 775 * on discrete graphics
 776 *
 777 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
 778 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
 779 * 0 and 1, respectively. The CCS for all planes are stored outside of the
 780 * GEM object in a reserved memory area dedicated for the storage of the
 781 * CCS data for all compressible GEM objects. The GEM object must be stored in
 782 * contiguous memory with a size aligned to 64KB
 783 */
 784#define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
 785
 786/*
 787 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
 788 *
 789 * Macroblocks are laid in a Z-shape, and each pixel data is following the
 790 * standard NV12 style.
 791 * As for NV12, an image is the result of two frame buffers: one for Y,
 792 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
 793 * Alignment requirements are (for each buffer):
 794 * - multiple of 128 pixels for the width
 795 * - multiple of  32 pixels for the height
 796 *
 797 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
 798 */
 799#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
 800
 801/*
 802 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
 803 *
 804 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
 805 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
 806 * they correspond to their 16x16 luma block.
 807 */
 808#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
 809
 810/*
 811 * Qualcomm Compressed Format
 812 *
 813 * Refers to a compressed variant of the base format that is compressed.
 814 * Implementation may be platform and base-format specific.
 815 *
 816 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 817 * Pixel data pitch/stride is aligned with macrotile width.
 818 * Pixel data height is aligned with macrotile height.
 819 * Entire pixel data buffer is aligned with 4k(bytes).
 820 */
 821#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
 822
 823/*
 824 * Qualcomm Tiled Format
 825 *
 826 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
 827 * Implementation may be platform and base-format specific.
 828 *
 829 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
 830 * Pixel data pitch/stride is aligned with macrotile width.
 831 * Pixel data height is aligned with macrotile height.
 832 * Entire pixel data buffer is aligned with 4k(bytes).
 833 */
 834#define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
 835
 836/*
 837 * Qualcomm Alternate Tiled Format
 838 *
 839 * Alternate tiled format typically only used within GMEM.
 840 * Implementation may be platform and base-format specific.
 841 */
 842#define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
 843
 844
 845/* Vivante framebuffer modifiers */
 846
 847/*
 848 * Vivante 4x4 tiling layout
 849 *
 850 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
 851 * layout.
 852 */
 853#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
 854
 855/*
 856 * Vivante 64x64 super-tiling layout
 857 *
 858 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
 859 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
 860 * major layout.
 861 *
 862 * For more information: see
 863 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
 864 */
 865#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
 866
 867/*
 868 * Vivante 4x4 tiling layout for dual-pipe
 869 *
 870 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
 871 * different base address. Offsets from the base addresses are therefore halved
 872 * compared to the non-split tiled layout.
 873 */
 874#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
 875
 876/*
 877 * Vivante 64x64 super-tiling layout for dual-pipe
 878 *
 879 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
 880 * starts at a different base address. Offsets from the base addresses are
 881 * therefore halved compared to the non-split super-tiled layout.
 882 */
 883#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
 884
 885/*
 886 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
 887 * the color buffer tiling modifiers defined above. When TS is present it's a
 888 * separate buffer containing the clear/compression status of each tile. The
 889 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
 890 * tile size in bytes covered by one entry in the status buffer and s is the
 891 * number of status bits per entry.
 892 * We reserve the top 8 bits of the Vivante modifier space for tile status
 893 * clear/compression modifiers, as future cores might add some more TS layout
 894 * variations.
 895 */
 896#define VIVANTE_MOD_TS_64_4               (1ULL << 48)
 897#define VIVANTE_MOD_TS_64_2               (2ULL << 48)
 898#define VIVANTE_MOD_TS_128_4              (3ULL << 48)
 899#define VIVANTE_MOD_TS_256_4              (4ULL << 48)
 900#define VIVANTE_MOD_TS_MASK               (0xfULL << 48)
 901
 902/*
 903 * Vivante compression modifiers. Those depend on a TS modifier being present
 904 * as the TS bits get reinterpreted as compression tags instead of simple
 905 * clear markers when compression is enabled.
 906 */
 907#define VIVANTE_MOD_COMP_DEC400           (1ULL << 52)
 908#define VIVANTE_MOD_COMP_MASK             (0xfULL << 52)
 909
 910/* Masking out the extension bits will yield the base modifier. */
 911#define VIVANTE_MOD_EXT_MASK              (VIVANTE_MOD_TS_MASK | \
 912                                           VIVANTE_MOD_COMP_MASK)
 913
 914/* NVIDIA frame buffer modifiers */
 915
 916/*
 917 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
 918 *
 919 * Pixels are arranged in simple tiles of 16 x 16 bytes.
 920 */
 921#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
 922
 923/*
 924 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
 925 * and Tegra GPUs starting with Tegra K1.
 926 *
 927 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
 928 * based on the architecture generation.  GOBs themselves are then arranged in
 929 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
 930 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
 931 * a block depth or height of "4").
 932 *
 933 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
 934 * in full detail.
 935 *
 936 *       Macro
 937 * Bits  Param Description
 938 * ----  ----- -----------------------------------------------------------------
 939 *
 940 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
 941 *             compatibility with the existing
 942 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 943 *
 944 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
 945 *             compatibility with the existing
 946 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
 947 *
 948 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
 949 *             size).  Must be zero.
 950 *
 951 *             Note there is no log2(width) parameter.  Some portions of the
 952 *             hardware support a block width of two gobs, but it is impractical
 953 *             to use due to lack of support elsewhere, and has no known
 954 *             benefits.
 955 *
 956 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
 957 *             in blocks, specified via log2(tile width in blocks)).  Must be
 958 *             zero.
 959 *
 960 * 19:12 k     Page Kind.  This value directly maps to a field in the page
 961 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
 962 *             in memory and can be derived from the tuple
 963 *
 964 *               (format, GPU model, compression type, samples per pixel)
 965 *
 966 *             Where compression type is defined below.  If GPU model were
 967 *             implied by the format modifier, format, or memory buffer, page
 968 *             kind would not need to be included in the modifier itself, but
 969 *             since the modifier should define the layout of the associated
 970 *             memory buffer independent from any device or other context, it
 971 *             must be included here.
 972 *
 973 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
 974 *             starting with Fermi GPUs.  Additionally, the mapping between page
 975 *             kind and bit layout has changed at various points.
 976 *
 977 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
 978 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
 979 *               2 = Gob Height 8, Turing+ Page Kind mapping
 980 *               3 = Reserved for future use.
 981 *
 982 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
 983 *             bit remapping step that occurs at an even lower level than the
 984 *             page kind and block linear swizzles.  This causes the layout of
 985 *             surfaces mapped in those SOC's GPUs to be incompatible with the
 986 *             equivalent mapping on other GPUs in the same system.
 987 *
 988 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
 989 *               1 = Desktop GPU and Tegra Xavier+ Layout
 990 *
 991 * 25:23 c     Lossless Framebuffer Compression type.
 992 *
 993 *               0 = none
 994 *               1 = ROP/3D, layout 1, exact compression format implied by Page
 995 *                   Kind field
 996 *               2 = ROP/3D, layout 2, exact compression format implied by Page
 997 *                   Kind field
 998 *               3 = CDE horizontal
 999 *               4 = CDE vertical
1000 *               5 = Reserved for future use
1001 *               6 = Reserved for future use
1002 *               7 = Reserved for future use
1003 *
1004 * 55:25 -     Reserved for future use.  Must be zero.
1005 */
1006#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
1007	fourcc_mod_code(NVIDIA, (0x10 | \
1008				 ((h) & 0xf) | \
1009				 (((k) & 0xff) << 12) | \
1010				 (((g) & 0x3) << 20) | \
1011				 (((s) & 0x1) << 22) | \
1012				 (((c) & 0x7) << 23)))
1013
1014/* To grandfather in prior block linear format modifiers to the above layout,
1015 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
1016 * with block-linear layouts, is remapped within drivers to the value 0xfe,
1017 * which corresponds to the "generic" kind used for simple single-sample
1018 * uncompressed color formats on Fermi - Volta GPUs.
1019 */
1020static __inline__ __u64
1021drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
1022{
1023	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
1024		return modifier;
1025	else
1026		return modifier | (0xfe << 12);
1027}
1028
1029/*
1030 * 16Bx2 Block Linear layout, used by Tegra K1 and later
1031 *
1032 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
1033 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
1034 *
1035 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
1036 *
1037 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
1038 * Valid values are:
1039 *
1040 * 0 == ONE_GOB
1041 * 1 == TWO_GOBS
1042 * 2 == FOUR_GOBS
1043 * 3 == EIGHT_GOBS
1044 * 4 == SIXTEEN_GOBS
1045 * 5 == THIRTYTWO_GOBS
1046 *
1047 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1048 * in full detail.
1049 */
1050#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
1051	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
1052
1053#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
1054	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
1055#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1056	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1057#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1058	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1059#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1060	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1061#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1062	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1063#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1064	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1065
1066/*
1067 * Some Broadcom modifiers take parameters, for example the number of
1068 * vertical lines in the image. Reserve the lower 32 bits for modifier
1069 * type, and the next 24 bits for parameters. Top 8 bits are the
1070 * vendor code.
1071 */
1072#define __fourcc_mod_broadcom_param_shift 8
1073#define __fourcc_mod_broadcom_param_bits 48
1074#define fourcc_mod_broadcom_code(val, params) \
1075	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1076#define fourcc_mod_broadcom_param(m) \
1077	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
1078	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1079#define fourcc_mod_broadcom_mod(m) \
1080	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
1081		 __fourcc_mod_broadcom_param_shift))
1082
1083/*
1084 * Broadcom VC4 "T" format
1085 *
1086 * This is the primary layout that the V3D GPU can texture from (it
1087 * can't do linear).  The T format has:
1088 *
1089 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
1090 *   pixels at 32 bit depth.
1091 *
1092 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1093 *   16x16 pixels).
1094 *
1095 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
1096 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1097 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
1098 *
1099 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1100 *   tiles) or right-to-left (odd rows of 4k tiles).
1101 */
1102#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1103
1104/*
1105 * Broadcom SAND format
1106 *
1107 * This is the native format that the H.264 codec block uses.  For VC4
1108 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1109 *
1110 * The image can be considered to be split into columns, and the
1111 * columns are placed consecutively into memory.  The width of those
1112 * columns can be either 32, 64, 128, or 256 pixels, but in practice
1113 * only 128 pixel columns are used.
1114 *
1115 * The pitch between the start of each column is set to optimally
1116 * switch between SDRAM banks. This is passed as the number of lines
1117 * of column width in the modifier (we can't use the stride value due
1118 * to various core checks that look at it , so you should set the
1119 * stride to width*cpp).
1120 *
1121 * Note that the column height for this format modifier is the same
1122 * for all of the planes, assuming that each column contains both Y
1123 * and UV.  Some SAND-using hardware stores UV in a separate tiled
1124 * image from Y to reduce the column height, which is not supported
1125 * with these modifiers.
1126 *
1127 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1128 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1129 * wide, but as this is a 10 bpp format that translates to 96 pixels.
1130 */
1131
1132#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1133	fourcc_mod_broadcom_code(2, v)
1134#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1135	fourcc_mod_broadcom_code(3, v)
1136#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1137	fourcc_mod_broadcom_code(4, v)
1138#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1139	fourcc_mod_broadcom_code(5, v)
1140
1141#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1142	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1143#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1144	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1145#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1146	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1147#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1148	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1149
1150/* Broadcom UIF format
1151 *
1152 * This is the common format for the current Broadcom multimedia
1153 * blocks, including V3D 3.x and newer, newer video codecs, and
1154 * displays.
1155 *
1156 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1157 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
1158 * stored in columns, with padding between the columns to ensure that
1159 * moving from one column to the next doesn't hit the same SDRAM page
1160 * bank.
1161 *
1162 * To calculate the padding, it is assumed that each hardware block
1163 * and the software driving it knows the platform's SDRAM page size,
1164 * number of banks, and XOR address, and that it's identical between
1165 * all blocks using the format.  This tiling modifier will use XOR as
1166 * necessary to reduce the padding.  If a hardware block can't do XOR,
1167 * the assumption is that a no-XOR tiling modifier will be created.
1168 */
1169#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1170
1171/*
1172 * Arm Framebuffer Compression (AFBC) modifiers
1173 *
1174 * AFBC is a proprietary lossless image compression protocol and format.
1175 * It provides fine-grained random access and minimizes the amount of data
1176 * transferred between IP blocks.
1177 *
1178 * AFBC has several features which may be supported and/or used, which are
1179 * represented using bits in the modifier. Not all combinations are valid,
1180 * and different devices or use-cases may support different combinations.
1181 *
1182 * Further information on the use of AFBC modifiers can be found in
1183 * Documentation/gpu/afbc.rst
1184 */
1185
1186/*
1187 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1188 * modifiers) denote the category for modifiers. Currently we have three
1189 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1190 * sixteen different categories.
1191 */
1192#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1193	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1194
1195#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1196#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1197
1198#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1199	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1200
1201/*
1202 * AFBC superblock size
1203 *
1204 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1205 * size (in pixels) must be aligned to a multiple of the superblock size.
1206 * Four lowest significant bits(LSBs) are reserved for block size.
1207 *
1208 * Where one superblock size is specified, it applies to all planes of the
1209 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1210 * the first applies to the Luma plane and the second applies to the Chroma
1211 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1212 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1213 */
1214#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1215#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1216#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1217#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1218#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1219
1220/*
1221 * AFBC lossless colorspace transform
1222 *
1223 * Indicates that the buffer makes use of the AFBC lossless colorspace
1224 * transform.
1225 */
1226#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1227
1228/*
1229 * AFBC block-split
1230 *
1231 * Indicates that the payload of each superblock is split. The second
1232 * half of the payload is positioned at a predefined offset from the start
1233 * of the superblock payload.
1234 */
1235#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1236
1237/*
1238 * AFBC sparse layout
1239 *
1240 * This flag indicates that the payload of each superblock must be stored at a
1241 * predefined position relative to the other superblocks in the same AFBC
1242 * buffer. This order is the same order used by the header buffer. In this mode
1243 * each superblock is given the same amount of space as an uncompressed
1244 * superblock of the particular format would require, rounding up to the next
1245 * multiple of 128 bytes in size.
1246 */
1247#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1248
1249/*
1250 * AFBC copy-block restrict
1251 *
1252 * Buffers with this flag must obey the copy-block restriction. The restriction
1253 * is such that there are no copy-blocks referring across the border of 8x8
1254 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1255 */
1256#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1257
1258/*
1259 * AFBC tiled layout
1260 *
1261 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1262 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1263 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1264 * larger bpp formats. The order between the tiles is scan line.
1265 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1266 * to the tile size.
1267 */
1268#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1269
1270/*
1271 * AFBC solid color blocks
1272 *
1273 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1274 * can be reduced if a whole superblock is a single color.
1275 */
1276#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1277
1278/*
1279 * AFBC double-buffer
1280 *
1281 * Indicates that the buffer is allocated in a layout safe for front-buffer
1282 * rendering.
1283 */
1284#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1285
1286/*
1287 * AFBC buffer content hints
1288 *
1289 * Indicates that the buffer includes per-superblock content hints.
1290 */
1291#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1292
1293/* AFBC uncompressed storage mode
1294 *
1295 * Indicates that the buffer is using AFBC uncompressed storage mode.
1296 * In this mode all superblock payloads in the buffer use the uncompressed
1297 * storage mode, which is usually only used for data which cannot be compressed.
1298 * The buffer layout is the same as for AFBC buffers without USM set, this only
1299 * affects the storage mode of the individual superblocks. Note that even a
1300 * buffer without USM set may use uncompressed storage mode for some or all
1301 * superblocks, USM just guarantees it for all.
1302 */
1303#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1304
1305/*
1306 * Arm Fixed-Rate Compression (AFRC) modifiers
1307 *
1308 * AFRC is a proprietary fixed rate image compression protocol and format,
1309 * designed to provide guaranteed bandwidth and memory footprint
1310 * reductions in graphics and media use-cases.
1311 *
1312 * AFRC buffers consist of one or more planes, with the same components
1313 * and meaning as an uncompressed buffer using the same pixel format.
1314 *
1315 * Within each plane, the pixel/luma/chroma values are grouped into
1316 * "coding unit" blocks which are individually compressed to a
1317 * fixed size (in bytes). All coding units within a given plane of a buffer
1318 * store the same number of values, and have the same compressed size.
1319 *
1320 * The coding unit size is configurable, allowing different rates of compression.
1321 *
1322 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1323 * depends on the coding unit size.
1324 *
1325 * Coding Unit Size   Plane Alignment
1326 * ----------------   ---------------
1327 * 16 bytes           1024 bytes
1328 * 24 bytes           512  bytes
1329 * 32 bytes           2048 bytes
1330 *
1331 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1332 * to a multiple of the paging tile dimensions.
1333 * The dimensions of each paging tile depend on whether the buffer is optimised for
1334 * scanline (SCAN layout) or rotated (ROT layout) access.
1335 *
1336 * Layout   Paging Tile Width   Paging Tile Height
1337 * ------   -----------------   ------------------
1338 * SCAN     16 coding units     4 coding units
1339 * ROT      8  coding units     8 coding units
1340 *
1341 * The dimensions of each coding unit depend on the number of components
1342 * in the compressed plane and whether the buffer is optimised for
1343 * scanline (SCAN layout) or rotated (ROT layout) access.
1344 *
1345 * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1346 * -----------------------------   ---------   -----------------   ------------------
1347 * 1                               SCAN        16 samples          4 samples
1348 * Example: 16x4 luma samples in a 'Y' plane
1349 *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1350 * -----------------------------   ---------   -----------------   ------------------
1351 * 1                               ROT         8 samples           8 samples
1352 * Example: 8x8 luma samples in a 'Y' plane
1353 *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1354 * -----------------------------   ---------   -----------------   ------------------
1355 * 2                               DONT CARE   8 samples           4 samples
1356 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1357 * -----------------------------   ---------   -----------------   ------------------
1358 * 3                               DONT CARE   4 samples           4 samples
1359 * Example: 4x4 pixels in an RGB buffer without alpha
1360 * -----------------------------   ---------   -----------------   ------------------
1361 * 4                               DONT CARE   4 samples           4 samples
1362 * Example: 4x4 pixels in an RGB buffer with alpha
1363 */
1364
1365#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1366
1367#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1368	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1369
1370/*
1371 * AFRC coding unit size modifier.
1372 *
1373 * Indicates the number of bytes used to store each compressed coding unit for
1374 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1375 * is the same for both Cb and Cr, which may be stored in separate planes.
1376 *
1377 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1378 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1379 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1380 * this corresponds to the luma plane.
1381 *
1382 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1383 * each compressed coding unit in the second and third planes in the buffer.
1384 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1385 *
1386 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1387 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1388 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1389 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1390 */
1391#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1392#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1393#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1394#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1395
1396#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1397#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1398
1399/*
1400 * AFRC scanline memory layout.
1401 *
1402 * Indicates if the buffer uses the scanline-optimised layout
1403 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1404 * The memory layout is the same for all planes.
1405 */
1406#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1407
1408/*
1409 * Arm 16x16 Block U-Interleaved modifier
1410 *
1411 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1412 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1413 * in the block are reordered.
1414 */
1415#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1416	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1417
1418/*
1419 * Allwinner tiled modifier
1420 *
1421 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1422 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1423 * planes.
1424 *
1425 * With this tiling, the luminance samples are disposed in tiles representing
1426 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1427 * The pixel order in each tile is linear and the tiles are disposed linearly,
1428 * both in row-major order.
1429 */
1430#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1431
1432/*
1433 * Amlogic Video Framebuffer Compression modifiers
1434 *
1435 * Amlogic uses a proprietary lossless image compression protocol and format
1436 * for their hardware video codec accelerators, either video decoders or
1437 * video input encoders.
1438 *
1439 * It considerably reduces memory bandwidth while writing and reading
1440 * frames in memory.
1441 *
1442 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1443 * per component YCbCr 420, single plane :
1444 * - DRM_FORMAT_YUV420_8BIT
1445 * - DRM_FORMAT_YUV420_10BIT
1446 *
1447 * The first 8 bits of the mode defines the layout, then the following 8 bits
1448 * defines the options changing the layout.
1449 *
1450 * Not all combinations are valid, and different SoCs may support different
1451 * combinations of layout and options.
1452 */
1453#define __fourcc_mod_amlogic_layout_mask 0xff
1454#define __fourcc_mod_amlogic_options_shift 8
1455#define __fourcc_mod_amlogic_options_mask 0xff
1456
1457#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1458	fourcc_mod_code(AMLOGIC, \
1459			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1460			(((__options) & __fourcc_mod_amlogic_options_mask) \
1461			 << __fourcc_mod_amlogic_options_shift))
1462
1463/* Amlogic FBC Layouts */
1464
1465/*
1466 * Amlogic FBC Basic Layout
1467 *
1468 * The basic layout is composed of:
1469 * - a body content organized in 64x32 superblocks with 4096 bytes per
1470 *   superblock in default mode.
1471 * - a 32 bytes per 128x64 header block
1472 *
1473 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1474 */
1475#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1476
1477/*
1478 * Amlogic FBC Scatter Memory layout
1479 *
1480 * Indicates the header contains IOMMU references to the compressed
1481 * frames content to optimize memory access and layout.
1482 *
1483 * In this mode, only the header memory address is needed, thus the
1484 * content memory organization is tied to the current producer
1485 * execution and cannot be saved/dumped neither transferrable between
1486 * Amlogic SoCs supporting this modifier.
1487 *
1488 * Due to the nature of the layout, these buffers are not expected to
1489 * be accessible by the user-space clients, but only accessible by the
1490 * hardware producers and consumers.
1491 *
1492 * The user-space clients should expect a failure while trying to mmap
1493 * the DMA-BUF handle returned by the producer.
1494 */
1495#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1496
1497/* Amlogic FBC Layout Options Bit Mask */
1498
1499/*
1500 * Amlogic FBC Memory Saving mode
1501 *
1502 * Indicates the storage is packed when pixel size is multiple of word
1503 * boundaries, i.e. 8bit should be stored in this mode to save allocation
1504 * memory.
1505 *
1506 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1507 * the basic layout and 3200 bytes per 64x32 superblock combined with
1508 * the scatter layout.
1509 */
1510#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1511
1512/* MediaTek modifiers
1513 * Bits  Parameter                Notes
1514 * ----- ------------------------ ---------------------------------------------
1515 *   7: 0 TILE LAYOUT              Values are MTK_FMT_MOD_TILE_*
1516 *  15: 8 COMPRESSION              Values are MTK_FMT_MOD_COMPRESS_*
1517 *  23:16 10 BIT LAYOUT            Values are MTK_FMT_MOD_10BIT_LAYOUT_*
1518 *
1519 */
1520
1521#define DRM_FORMAT_MOD_MTK(__flags)		fourcc_mod_code(MTK, __flags)
1522
1523/*
1524 * MediaTek Tiled Modifier
1525 * The lowest 8 bits of the modifier is used to specify the tiling
1526 * layout. Only the 16L_32S tiling is used for now, but we define an
1527 * "untiled" version and leave room for future expansion.
1528 */
1529#define MTK_FMT_MOD_TILE_MASK     0xf
1530#define MTK_FMT_MOD_TILE_NONE     0x0
1531#define MTK_FMT_MOD_TILE_16L32S   0x1
1532
1533/*
1534 * Bits 8-15 specify compression options
1535 */
1536#define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)
1537#define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)
1538#define MTK_FMT_MOD_COMPRESS_V1   (0x1 << 8)
1539
1540/*
1541 * Bits 16-23 specify how the bits of 10 bit formats are
1542 * stored out in memory
1543 */
1544#define MTK_FMT_MOD_10BIT_LAYOUT_MASK      (0xf << 16)
1545#define MTK_FMT_MOD_10BIT_LAYOUT_PACKED    (0x0 << 16)
1546#define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED  (0x1 << 16)
1547#define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)
1548
1549/* alias for the most common tiling format */
1550#define DRM_FORMAT_MOD_MTK_16L_32S_TILE  DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)
1551
1552/*
1553 * Apple GPU-tiled layouts.
1554 *
1555 * Apple GPUs support nonlinear tilings with optional lossless compression.
1556 *
1557 * GPU-tiled images are divided into 16KiB tiles:
1558 *
1559 *     Bytes per pixel  Tile size
1560 *     ---------------  ---------
1561 *                   1  128x128
1562 *                   2  128x64
1563 *                   4  64x64
1564 *                   8  64x32
1565 *                  16  32x32
1566 *
1567 * Tiles are raster-order. Pixels within a tile are interleaved (Morton order).
1568 *
1569 * Compressed images pad the body to 128-bytes and are immediately followed by a
1570 * metadata section. The metadata section rounds the image dimensions to
1571 * powers-of-two and contains 8 bytes for each 16x16 compression subtile.
1572 * Subtiles are interleaved (Morton order).
1573 *
1574 * All images are 128-byte aligned.
1575 *
1576 * These layouts fundamentally do not have meaningful strides. No matter how we
1577 * specify strides for these layouts, userspace unaware of Apple image layouts
1578 * will be unable to use correctly the specified stride for any purpose.
1579 * Userspace aware of the image layouts do not use strides. The most "correct"
1580 * convention would be setting the image stride to 0. Unfortunately, some
1581 * software assumes the stride is at least (width * bytes per pixel). We
1582 * therefore require that stride equals (width * bytes per pixel). Since the
1583 * stride is arbitrary here, we pick the simplest convention.
1584 *
1585 * Although containing two sections, compressed image layouts are treated in
1586 * software as a single plane. This is modelled after AFBC, a similar
1587 * scheme. Attempting to separate the sections to be "explicit" in DRM would
1588 * only generate more confusion, as software does not treat the image this way.
1589 *
1590 * For detailed information on the hardware image layouts, see
1591 * https://docs.mesa3d.org/drivers/asahi.html#image-layouts
1592 */
1593#define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)
1594#define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)
1595
1596/*
1597 * AMD modifiers
1598 *
1599 * Memory layout:
1600 *
1601 * without DCC:
1602 *   - main surface
1603 *
1604 * with DCC & without DCC_RETILE:
1605 *   - main surface in plane 0
1606 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1607 *
1608 * with DCC & DCC_RETILE:
1609 *   - main surface in plane 0
1610 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1611 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1612 *
1613 * For multi-plane formats the above surfaces get merged into one plane for
1614 * each format plane, based on the required alignment only.
1615 *
1616 * Bits  Parameter                Notes
1617 * ----- ------------------------ ---------------------------------------------
1618 *
1619 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1620 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1621 *    13 DCC
1622 *    14 DCC_RETILE
1623 *    15 DCC_PIPE_ALIGN
1624 *    16 DCC_INDEPENDENT_64B
1625 *    17 DCC_INDEPENDENT_128B
1626 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1627 *    20 DCC_CONSTANT_ENCODE
1628 * 23:21 PIPE_XOR_BITS            Only for some chips
1629 * 26:24 BANK_XOR_BITS            Only for some chips
1630 * 29:27 PACKERS                  Only for some chips
1631 * 32:30 RB                       Only for some chips
1632 * 35:33 PIPE                     Only for some chips
1633 * 55:36 -                        Reserved for future use, must be zero
1634 */
1635#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1636
1637#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1638
1639/* Reserve 0 for GFX8 and older */
1640#define AMD_FMT_MOD_TILE_VER_GFX9 1
1641#define AMD_FMT_MOD_TILE_VER_GFX10 2
1642#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1643#define AMD_FMT_MOD_TILE_VER_GFX11 4
1644#define AMD_FMT_MOD_TILE_VER_GFX12 5
1645
1646/*
1647 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1648 * version.
1649 */
1650#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1651
1652/*
1653 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1654 * GFX9 as canonical version.
1655 *
1656 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1657 */
1658#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1659#define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1660#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1661#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1662#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1663#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1664
1665/* Gfx12 swizzle modes:
1666 *    0 - LINEAR
1667 *    1 - 256B_2D  - 2D block dimensions
1668 *    2 - 4KB_2D
1669 *    3 - 64KB_2D
1670 *    4 - 256KB_2D
1671 *    5 - 4KB_3D   - 3D block dimensions
1672 *    6 - 64KB_3D
1673 *    7 - 256KB_3D
1674 */
1675#define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1676#define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1677#define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1678#define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1679
1680#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1681#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1682#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1683
1684#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1685#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1686#define AMD_FMT_MOD_TILE_SHIFT 8
1687#define AMD_FMT_MOD_TILE_MASK 0x1F
1688
1689/* Whether DCC compression is enabled. */
1690#define AMD_FMT_MOD_DCC_SHIFT 13
1691#define AMD_FMT_MOD_DCC_MASK 0x1
1692
1693/*
1694 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1695 * one which is not-aligned.
1696 */
1697#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1698#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1699
1700/* Only set if DCC_RETILE = false */
1701#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1702#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1703
1704#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1705#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1706#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1707#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1708#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1709#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1710
1711/*
1712 * DCC supports embedding some clear colors directly in the DCC surface.
1713 * However, on older GPUs the rendering HW ignores the embedded clear color
1714 * and prefers the driver provided color. This necessitates doing a fastclear
1715 * eliminate operation before a process transfers control.
1716 *
1717 * If this bit is set that means the fastclear eliminate is not needed for these
1718 * embeddable colors.
1719 */
1720#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1721#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1722
1723/*
1724 * The below fields are for accounting for per GPU differences. These are only
1725 * relevant for GFX9 and later and if the tile field is *_X/_T.
1726 *
1727 * PIPE_XOR_BITS = always needed
1728 * BANK_XOR_BITS = only for TILE_VER_GFX9
1729 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1730 * RB = only for TILE_VER_GFX9 & DCC
1731 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1732 */
1733#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1734#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1735#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1736#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1737#define AMD_FMT_MOD_PACKERS_SHIFT 27
1738#define AMD_FMT_MOD_PACKERS_MASK 0x7
1739#define AMD_FMT_MOD_RB_SHIFT 30
1740#define AMD_FMT_MOD_RB_MASK 0x7
1741#define AMD_FMT_MOD_PIPE_SHIFT 33
1742#define AMD_FMT_MOD_PIPE_MASK 0x7
1743
1744#define AMD_FMT_MOD_SET(field, value) \
1745	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1746#define AMD_FMT_MOD_GET(field, value) \
1747	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1748#define AMD_FMT_MOD_CLEAR(field) \
1749	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1750
1751#if defined(__cplusplus)
1752}
1753#endif
1754
1755#endif /* DRM_FOURCC_H */