master
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * William Jolitz.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91
35 * from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
36 */
37
38#ifdef __arm__
39#include <arm/vmparam.h>
40#else /* !__arm__ */
41
42#ifndef _MACHINE_VMPARAM_H_
43#define _MACHINE_VMPARAM_H_
44
45/*
46 * Virtual memory related constants, all in bytes
47 */
48#ifndef MAXTSIZ
49#define MAXTSIZ (1*1024*1024*1024) /* max text size */
50#endif
51#ifndef DFLDSIZ
52#define DFLDSIZ (128*1024*1024) /* initial data size limit */
53#endif
54#ifndef MAXDSIZ
55#define MAXDSIZ (1*1024*1024*1024) /* max data size */
56#endif
57#ifndef DFLSSIZ
58#define DFLSSIZ (128*1024*1024) /* initial stack size limit */
59#endif
60#ifndef MAXSSIZ
61#define MAXSSIZ (1*1024*1024*1024) /* max stack size */
62#endif
63#ifndef SGROWSIZ
64#define SGROWSIZ (128*1024) /* amount to grow stack */
65#endif
66
67/*
68 * The physical address space is sparsely populated.
69 */
70#define VM_PHYSSEG_SPARSE
71
72/*
73 * The number of PHYSSEG entries.
74 */
75#define VM_PHYSSEG_MAX 64
76
77/*
78 * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
79 * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
80 * the pool from which physical pages for small UMA objects are
81 * allocated.
82 */
83#define VM_NFREEPOOL 2
84#define VM_FREEPOOL_DEFAULT 0
85#define VM_FREEPOOL_DIRECT 1
86
87/*
88 * Create two free page lists: VM_FREELIST_DMA32 is for physical pages that have
89 * physical addresses below 4G, and VM_FREELIST_DEFAULT is for all other
90 * physical pages.
91 */
92#define VM_NFREELIST 2
93#define VM_FREELIST_DEFAULT 0
94#define VM_FREELIST_DMA32 1
95
96/*
97 * When PAGE_SIZE is 4KB, an allocation size of 16MB is supported in order
98 * to optimize the use of the direct map by UMA. Specifically, a 64-byte
99 * cache line contains at most 8 L2 BLOCK entries, collectively mapping 16MB
100 * of physical memory. By reducing the number of distinct 16MB "pages" that
101 * are used by UMA, the physical memory allocator reduces the likelihood of
102 * both 2MB page TLB misses and cache misses during the page table walk when
103 * a 2MB page TLB miss does occur.
104 */
105#define VM_NFREEORDER 13
106
107/*
108 * Enable superpage reservations: 1 level.
109 */
110#ifndef VM_NRESERVLEVEL
111#define VM_NRESERVLEVEL 1
112#endif
113
114/*
115 * Level 0 reservations consist of 512 pages.
116 */
117#ifndef VM_LEVEL_0_ORDER
118#define VM_LEVEL_0_ORDER 9
119#endif
120
121/**
122 * Address space layout.
123 *
124 * ARMv8 implements up to a 48 bit virtual address space. The address space is
125 * split into 2 regions at each end of the 64 bit address space, with an
126 * out of range "hole" in the middle.
127 *
128 * We use the full 48 bits for each region, however the kernel may only use
129 * a limited range within this space.
130 *
131 * Upper region: 0xffffffffffffffff Top of virtual memory
132 *
133 * 0xfffffeffffffffff End of DMAP
134 * 0xffffa00000000000 Start of DMAP
135 *
136 * 0xffff009fffffffff End of KASAN shadow map
137 * 0xffff008000000000 Start of KASAN shadow map
138 *
139 * 0xffff007fffffffff End of KVA
140 * 0xffff000000000000 Kernel base address & start of KVA
141 *
142 * Hole: 0xfffeffffffffffff
143 * 0x0001000000000000
144 *
145 * Lower region: 0x0000ffffffffffff End of user address space
146 * 0x0000000000000000 Start of user address space
147 *
148 * We use the upper region for the kernel, and the lower region for userland.
149 *
150 * We define some interesting address constants:
151 *
152 * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
153 * 64 bit address space, mostly just for convenience.
154 *
155 * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
156 * mappable kernel virtual address space.
157 *
158 * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
159 * user address space.
160 */
161#define VM_MIN_ADDRESS (0x0000000000000000UL)
162#define VM_MAX_ADDRESS (0xffffffffffffffffUL)
163
164/* 512 GiB of kernel addresses */
165#define VM_MIN_KERNEL_ADDRESS (0xffff000000000000UL)
166#define VM_MAX_KERNEL_ADDRESS (0xffff008000000000UL)
167
168/* 128 GiB KASAN shadow map */
169#define KASAN_MIN_ADDRESS (0xffff008000000000UL)
170#define KASAN_MAX_ADDRESS (0xffff00a000000000UL)
171
172/* The address bits that hold a pointer authentication code */
173#define PAC_ADDR_MASK (0xff7f000000000000UL)
174
175/* If true addr is in the kernel address space */
176#define ADDR_IS_KERNEL(addr) (((addr) & (1ul << 55)) == (1ul << 55))
177/* If true addr is in its canonical form (i.e. no TBI, PAC, etc.) */
178#define ADDR_IS_CANONICAL(addr) \
179 (((addr) & 0xffff000000000000UL) == 0 || \
180 ((addr) & 0xffff000000000000UL) == 0xffff000000000000UL)
181#define ADDR_MAKE_CANONICAL(addr) ({ \
182 __typeof(addr) _tmp_addr = (addr); \
183 \
184 _tmp_addr &= ~0xffff000000000000UL; \
185 if (ADDR_IS_KERNEL(addr)) \
186 _tmp_addr |= 0xffff000000000000UL; \
187 \
188 _tmp_addr; \
189})
190
191/* 95 TiB maximum for the direct map region */
192#define DMAP_MIN_ADDRESS (0xffffa00000000000UL)
193#define DMAP_MAX_ADDRESS (0xffffff0000000000UL)
194
195#define DMAP_MIN_PHYSADDR (dmap_phys_base)
196#define DMAP_MAX_PHYSADDR (dmap_phys_max)
197
198/*
199 * Checks to see if a physical address is in the DMAP range.
200 * - PHYS_IN_DMAP_RANGE will return true that may be within the DMAP range
201 * but not accessible through the DMAP, e.g. device memory between two
202 * DMAP physical address regions.
203 * - PHYS_IN_DMAP will check if DMAP address is mapped before returning true.
204 *
205 * PHYS_IN_DMAP_RANGE should only be used when a check on the address is
206 * performed, e.g. by checking the physical address is within phys_avail,
207 * or checking the virtual address is mapped.
208 */
209#define PHYS_IN_DMAP_RANGE(pa) ((pa) >= DMAP_MIN_PHYSADDR && \
210 (pa) < DMAP_MAX_PHYSADDR)
211#define PHYS_IN_DMAP(pa) (PHYS_IN_DMAP_RANGE(pa) && \
212 pmap_klookup(PHYS_TO_DMAP(pa), NULL))
213/* True if va is in the dmap range */
214#define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \
215 (va) < (dmap_max_addr))
216
217#define PMAP_HAS_DMAP 1
218#define PHYS_TO_DMAP(pa) \
219({ \
220 KASSERT(PHYS_IN_DMAP_RANGE(pa), \
221 ("%s: PA out of range, PA: 0x%lx", __func__, \
222 (vm_paddr_t)(pa))); \
223 ((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \
224})
225
226#define DMAP_TO_PHYS(va) \
227({ \
228 KASSERT(VIRT_IN_DMAP(va), \
229 ("%s: VA out of range, VA: 0x%lx", __func__, \
230 (vm_offset_t)(va))); \
231 ((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \
232})
233
234#define VM_MIN_USER_ADDRESS (0x0000000000000000UL)
235#define VM_MAX_USER_ADDRESS (0x0001000000000000UL)
236
237#define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS)
238#define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS)
239
240#define KERNBASE (VM_MIN_KERNEL_ADDRESS)
241#define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE)
242#define USRSTACK SHAREDPAGE
243
244/*
245 * How many physical pages per kmem arena virtual page.
246 */
247#ifndef VM_KMEM_SIZE_SCALE
248#define VM_KMEM_SIZE_SCALE (1)
249#endif
250
251/*
252 * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
253 * kernel map.
254 */
255#ifndef VM_KMEM_SIZE_MAX
256#define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \
257 VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
258#endif
259
260/*
261 * Initial pagein size of beginning of executable file.
262 */
263#ifndef VM_INITIAL_PAGEIN
264#define VM_INITIAL_PAGEIN 16
265#endif
266
267#if !defined(KASAN) && !defined(KMSAN)
268#define UMA_MD_SMALL_ALLOC
269#endif
270
271#ifndef LOCORE
272
273extern vm_paddr_t dmap_phys_base;
274extern vm_paddr_t dmap_phys_max;
275extern vm_offset_t dmap_max_addr;
276
277#endif
278
279#define ZERO_REGION_SIZE (64 * 1024) /* 64KB */
280
281#define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS
282
283/*
284 * The pmap can create non-transparent large page mappings.
285 */
286#define PMAP_HAS_LARGEPAGES 1
287
288/*
289 * Need a page dump array for minidump.
290 */
291#define MINIDUMP_PAGE_TRACKING 1
292
293#endif /* !_MACHINE_VMPARAM_H_ */
294
295#endif /* !__arm__ */