master
  1/*===------------- avx512vlvnniintrin.h - VNNI intrinsics ------------------===
  2 *
  3 *
  4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  5 * See https://llvm.org/LICENSE.txt for license information.
  6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  7 *
  8 *===-----------------------------------------------------------------------===
  9 */
 10#ifndef __IMMINTRIN_H
 11#error "Never use <avx512vlvnniintrin.h> directly; include <immintrin.h> instead."
 12#endif
 13
 14#ifndef __AVX512VLVNNIINTRIN_H
 15#define __AVX512VLVNNIINTRIN_H
 16
 17/* Define the default attributes for the functions in this file. */
 18#define __DEFAULT_FN_ATTRS128                                                  \
 19  __attribute__((__always_inline__, __nodebug__,                               \
 20                 __target__("avx512vl,avx512vnni,no-evex512"),                 \
 21                 __min_vector_width__(128)))
 22#define __DEFAULT_FN_ATTRS256                                                  \
 23  __attribute__((__always_inline__, __nodebug__,                               \
 24                 __target__("avx512vl,avx512vnni,no-evex512"),                 \
 25                 __min_vector_width__(256)))
 26
 27/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
 28/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
 29/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
 30/// in \a S, and store the packed 32-bit results in DST.
 31///
 32/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
 33///
 34/// \code{.operation}
 35///    FOR j := 0 to 7
 36///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
 37///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
 38///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
 39///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
 40///      DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
 41///    ENDFOR
 42///    DST[MAX:256] := 0
 43/// \endcode
 44#define _mm256_dpbusd_epi32(S, A, B) \
 45  ((__m256i)__builtin_ia32_vpdpbusd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
 46
 47/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
 48/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
 49/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
 50/// in \a S using signed saturation, and store the packed 32-bit results in DST.
 51///
 52/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
 53///
 54/// \code{.operation}
 55///    FOR j := 0 to 7
 56///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
 57///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
 58///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
 59///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
 60///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
 61///    ENDFOR
 62///    DST[MAX:256] := 0
 63/// \endcode
 64#define _mm256_dpbusds_epi32(S, A, B) \
 65  ((__m256i)__builtin_ia32_vpdpbusds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
 66
 67/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
 68/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
 69/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
 70///  and store the packed 32-bit results in DST.
 71///
 72/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
 73///
 74/// \code{.operation}
 75///    FOR j := 0 to 7
 76///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
 77///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
 78///      DST.dword[j] := S.dword[j] + tmp1 + tmp2
 79///    ENDFOR
 80///    DST[MAX:256] := 0
 81/// \endcode
 82#define _mm256_dpwssd_epi32(S, A, B) \
 83  ((__m256i)__builtin_ia32_vpdpwssd256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
 84
 85/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
 86/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
 87/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
 88/// using signed saturation, and store the packed 32-bit results in DST.
 89///
 90/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
 91///
 92/// \code{.operation}
 93///    FOR j := 0 to 7
 94///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
 95///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
 96///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
 97///    ENDFOR
 98///    DST[MAX:256] := 0
 99/// \endcode
100#define _mm256_dpwssds_epi32(S, A, B) \
101  ((__m256i)__builtin_ia32_vpdpwssds256((__v8si)(S), (__v8si)(A), (__v8si)(B)))
102
103/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
104/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
105/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
106/// in \a S, and store the packed 32-bit results in DST.
107///
108/// This intrinsic corresponds to the <c> VPDPBUSD </c> instructions.
109///
110/// \code{.operation}
111///    FOR j := 0 to 3
112///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
113///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
114///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
115///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
116///      DST.dword[j] := S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4
117///    ENDFOR
118///    DST[MAX:128] := 0
119/// \endcode
120#define _mm_dpbusd_epi32(S, A, B) \
121  ((__m128i)__builtin_ia32_vpdpbusd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
122
123/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in \a A with
124/// corresponding signed 8-bit integers in \a B, producing 4 intermediate signed
125/// 16-bit results. Sum these 4 results with the corresponding 32-bit integer
126/// in \a S using signed saturation, and store the packed 32-bit results in DST.
127///
128/// This intrinsic corresponds to the <c> VPDPBUSDS </c> instructions.
129///
130/// \code{.operation}
131///    FOR j := 0 to 3
132///      tmp1.word := Signed(ZeroExtend16(A.byte[4*j]) * SignExtend16(B.byte[4*j]))
133///      tmp2.word := Signed(ZeroExtend16(A.byte[4*j+1]) * SignExtend16(B.byte[4*j+1]))
134///      tmp3.word := Signed(ZeroExtend16(A.byte[4*j+2]) * SignExtend16(B.byte[4*j+2]))
135///      tmp4.word := Signed(ZeroExtend16(A.byte[4*j+3]) * SignExtend16(B.byte[4*j+3]))
136///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2 + tmp3 + tmp4)
137///    ENDFOR
138///    DST[MAX:128] := 0
139/// \endcode
140#define _mm_dpbusds_epi32(S, A, B) \
141  ((__m128i)__builtin_ia32_vpdpbusds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
142
143/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
144/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
145/// results. Sum these 2 results with the corresponding 32-bit integer in \a S,
146/// and store the packed 32-bit results in DST.
147///
148/// This intrinsic corresponds to the <c> VPDPWSSD </c> instructions.
149///
150/// \code{.operation}
151///    FOR j := 0 to 3
152///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
153///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
154///      DST.dword[j] := S.dword[j] + tmp1 + tmp2
155///    ENDFOR
156///    DST[MAX:128] := 0
157/// \endcode
158#define _mm_dpwssd_epi32(S, A, B) \
159  ((__m128i)__builtin_ia32_vpdpwssd128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
160
161/// Multiply groups of 2 adjacent pairs of signed 16-bit integers in \a A with
162/// corresponding 16-bit integers in \a B, producing 2 intermediate signed 32-bit
163/// results. Sum these 2 results with the corresponding 32-bit integer in \a S
164/// using signed saturation, and store the packed 32-bit results in DST.
165///
166/// This intrinsic corresponds to the <c> VPDPWSSDS </c> instructions.
167///
168/// \code{.operation}
169///    FOR j := 0 to 3
170///      tmp1.dword := SignExtend32(A.word[2*j]) * SignExtend32(B.word[2*j])
171///      tmp2.dword := SignExtend32(A.word[2*j+1]) * SignExtend32(B.word[2*j+1])
172///      DST.dword[j] := Saturate32(S.dword[j] + tmp1 + tmp2)
173///    ENDFOR
174///    DST[MAX:128] := 0
175/// \endcode
176#define _mm_dpwssds_epi32(S, A, B) \
177  ((__m128i)__builtin_ia32_vpdpwssds128((__v4si)(S), (__v4si)(A), (__v4si)(B)))
178
179static __inline__ __m256i __DEFAULT_FN_ATTRS256
180_mm256_mask_dpbusd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
181{
182  return (__m256i)__builtin_ia32_selectd_256(__U,
183                                     (__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
184                                     (__v8si)__S);
185}
186
187static __inline__ __m256i __DEFAULT_FN_ATTRS256
188_mm256_maskz_dpbusd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
189{
190  return (__m256i)__builtin_ia32_selectd_256(__U,
191                                     (__v8si)_mm256_dpbusd_epi32(__S, __A, __B),
192                                     (__v8si)_mm256_setzero_si256());
193}
194
195static __inline__ __m256i __DEFAULT_FN_ATTRS256
196_mm256_mask_dpbusds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
197{
198  return (__m256i)__builtin_ia32_selectd_256(__U,
199                                    (__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
200                                    (__v8si)__S);
201}
202
203static __inline__ __m256i __DEFAULT_FN_ATTRS256
204_mm256_maskz_dpbusds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
205{
206  return (__m256i)__builtin_ia32_selectd_256(__U,
207                                     (__v8si)_mm256_dpbusds_epi32(__S, __A, __B),
208                                     (__v8si)_mm256_setzero_si256());
209}
210
211static __inline__ __m256i __DEFAULT_FN_ATTRS256
212_mm256_mask_dpwssd_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
213{
214  return (__m256i)__builtin_ia32_selectd_256(__U,
215                                     (__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
216                                     (__v8si)__S);
217}
218
219static __inline__ __m256i __DEFAULT_FN_ATTRS256
220_mm256_maskz_dpwssd_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
221{
222  return (__m256i)__builtin_ia32_selectd_256(__U,
223                                     (__v8si)_mm256_dpwssd_epi32(__S, __A, __B),
224                                     (__v8si)_mm256_setzero_si256());
225}
226
227static __inline__ __m256i __DEFAULT_FN_ATTRS256
228_mm256_mask_dpwssds_epi32(__m256i __S, __mmask8 __U, __m256i __A, __m256i __B)
229{
230  return (__m256i)__builtin_ia32_selectd_256(__U,
231                                    (__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
232                                    (__v8si)__S);
233}
234
235static __inline__ __m256i __DEFAULT_FN_ATTRS256
236_mm256_maskz_dpwssds_epi32(__mmask8 __U, __m256i __S, __m256i __A, __m256i __B)
237{
238  return (__m256i)__builtin_ia32_selectd_256(__U,
239                                    (__v8si)_mm256_dpwssds_epi32(__S, __A, __B),
240                                    (__v8si)_mm256_setzero_si256());
241}
242
243static __inline__ __m128i __DEFAULT_FN_ATTRS128
244_mm_mask_dpbusd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
245{
246  return (__m128i)__builtin_ia32_selectd_128(__U,
247                                        (__v4si)_mm_dpbusd_epi32(__S, __A, __B),
248                                        (__v4si)__S);
249}
250
251static __inline__ __m128i __DEFAULT_FN_ATTRS128
252_mm_maskz_dpbusd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
253{
254  return (__m128i)__builtin_ia32_selectd_128(__U,
255                                        (__v4si)_mm_dpbusd_epi32(__S, __A, __B),
256                                        (__v4si)_mm_setzero_si128());
257}
258
259static __inline__ __m128i __DEFAULT_FN_ATTRS128
260_mm_mask_dpbusds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
261{
262  return (__m128i)__builtin_ia32_selectd_128(__U,
263                                       (__v4si)_mm_dpbusds_epi32(__S, __A, __B),
264                                       (__v4si)__S);
265}
266
267static __inline__ __m128i __DEFAULT_FN_ATTRS128
268_mm_maskz_dpbusds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
269{
270  return (__m128i)__builtin_ia32_selectd_128(__U,
271                                       (__v4si)_mm_dpbusds_epi32(__S, __A, __B),
272                                       (__v4si)_mm_setzero_si128());
273}
274
275static __inline__ __m128i __DEFAULT_FN_ATTRS128
276_mm_mask_dpwssd_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
277{
278  return (__m128i)__builtin_ia32_selectd_128(__U,
279                                        (__v4si)_mm_dpwssd_epi32(__S, __A, __B),
280                                        (__v4si)__S);
281}
282
283static __inline__ __m128i __DEFAULT_FN_ATTRS128
284_mm_maskz_dpwssd_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
285{
286  return (__m128i)__builtin_ia32_selectd_128(__U,
287                                        (__v4si)_mm_dpwssd_epi32(__S, __A, __B),
288                                        (__v4si)_mm_setzero_si128());
289}
290
291static __inline__ __m128i __DEFAULT_FN_ATTRS128
292_mm_mask_dpwssds_epi32(__m128i __S, __mmask8 __U, __m128i __A, __m128i __B)
293{
294  return (__m128i)__builtin_ia32_selectd_128(__U,
295                                       (__v4si)_mm_dpwssds_epi32(__S, __A, __B),
296                                       (__v4si)__S);
297}
298
299static __inline__ __m128i __DEFAULT_FN_ATTRS128
300_mm_maskz_dpwssds_epi32(__mmask8 __U, __m128i __S, __m128i __A, __m128i __B)
301{
302  return (__m128i)__builtin_ia32_selectd_128(__U,
303                                       (__v4si)_mm_dpwssds_epi32(__S, __A, __B),
304                                       (__v4si)_mm_setzero_si128());
305}
306
307#undef __DEFAULT_FN_ATTRS128
308#undef __DEFAULT_FN_ATTRS256
309
310#endif