master
  1// Ported from musl, which is licensed under the MIT license:
  2// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
  3//
  4// https://git.musl-libc.org/cgit/musl/tree/src/math/__rem_pio2_large.c
  5
  6const std = @import("std");
  7const math = std.math;
  8
  9const init_jk = [_]i32{ 3, 4, 4, 6 }; // initial value for jk
 10
 11///
 12/// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
 13///
 14///              integer array, contains the (24*i)-th to (24*i+23)-th
 15///              bit of 2/pi after binary point. The corresponding
 16///              floating value is
 17///
 18///                      ipio2[i] * 2^(-24(i+1)).
 19///
 20/// NB: This table must have at least (e0-3)/24 + jk terms.
 21///     For quad precision (e0 <= 16360, jk = 6), this is 686.
 22const ipio2 = [_]i32{
 23    0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
 24    0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
 25    0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
 26    0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
 27    0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
 28    0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
 29    0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
 30    0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
 31    0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
 32    0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
 33    0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
 34
 35    0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
 36    0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
 37    0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
 38    0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
 39    0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
 40    0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
 41    0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
 42    0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
 43    0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
 44    0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
 45    0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
 46    0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
 47    0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
 48    0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
 49    0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
 50    0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
 51    0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
 52    0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
 53    0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
 54    0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
 55    0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
 56    0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
 57    0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
 58    0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
 59    0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
 60    0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
 61    0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
 62    0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
 63    0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
 64    0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
 65    0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
 66    0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
 67    0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
 68    0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
 69    0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
 70    0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
 71    0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
 72    0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
 73    0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
 74    0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
 75    0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
 76    0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
 77    0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
 78    0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
 79    0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
 80    0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
 81    0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
 82    0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
 83    0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
 84    0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
 85    0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
 86    0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
 87    0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
 88    0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
 89    0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
 90    0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
 91    0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
 92    0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
 93    0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
 94    0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
 95    0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
 96    0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
 97    0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
 98    0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
 99    0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
100    0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
101    0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
102    0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
103    0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
104    0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
105    0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
106    0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
107    0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
108    0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
109    0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
110    0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
111    0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
112    0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
113    0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
114    0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
115    0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
116    0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
117    0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
118    0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
119    0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
120    0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
121    0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
122    0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
123    0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
124    0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
125    0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
126    0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
127    0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
128    0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
129    0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
130    0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
131    0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
132    0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
133    0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
134    0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
135    0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
136    0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
137    0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
138    0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
139};
140
141const PIo2 = [_]f64{
142    1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000
143    7.54978941586159635335e-08, // 0x3E74442D, 0x00000000
144    5.39030252995776476554e-15, // 0x3CF84698, 0x80000000
145    3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000
146    1.27065575308067607349e-29, // 0x39F01B83, 0x80000000
147    1.22933308981111328932e-36, // 0x387A2520, 0x40000000
148    2.73370053816464559624e-44, // 0x36E38222, 0x80000000
149    2.16741683877804819444e-51, // 0x3569F31D, 0x00000000
150};
151
152/// Returns the last three digits of N with y = x - N*pi/2 so that |y| < pi/2.
153///
154/// The method is to compute the integer (mod 8) and fraction parts of
155/// (2/pi)*x without doing the full multiplication. In general we
156/// skip the part of the product that are known to be a huge integer (
157/// more accurately, = 0 mod 8 ). Thus the number of operations are
158/// independent of the exponent of the input.
159///
160/// (2/pi) is represented by an array of 24-bit integers in ipio2[].
161///
162/// Input parameters:
163///      x[]     The input value (must be positive) is broken into nx
164///              pieces of 24-bit integers in double precision format.
165///              x[i] will be the i-th 24 bit of x. The scaled exponent
166///              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
167///              match x's up to 24 bits.
168///
169///              Example of breaking a double positive z into x[0]+x[1]+x[2]:
170///                      e0 = ilogb(z)-23
171///                      z  = scalbn(z,-e0)
172///              for i = 0,1,2
173///                      x[i] = floor(z)
174///                      z    = (z-x[i])*2**24
175///
176///
177///      y[]     output result in an array of double precision numbers.
178///              The dimension of y[] is:
179///                      24-bit  precision       1
180///                      53-bit  precision       2
181///                      64-bit  precision       2
182///                      113-bit precision       3
183///              The actual value is the sum of them. Thus for 113-bit
184///              precision, one may have to do something like:
185///
186///              long double t,w,r_head, r_tail;
187///              t = (long double)y[2] + (long double)y[1];
188///              w = (long double)y[0];
189///              r_head = t+w;
190///              r_tail = w - (r_head - t);
191///
192///      e0      The exponent of x[0]. Must be <= 16360 or you need to
193///              expand the ipio2 table.
194///
195///      nx      dimension of x[]
196///
197///      prec    an integer indicating the precision:
198///                      0       24  bits (single)
199///                      1       53  bits (double)
200///                      2       64  bits (extended)
201///                      3       113 bits (quad)
202///
203/// Here is the description of some local variables:
204///
205///      jk      jk+1 is the initial number of terms of ipio2[] needed
206///              in the computation. The minimum and recommended value
207///              for jk is 3,4,4,6 for single, double, extended, and quad.
208///              jk+1 must be 2 larger than you might expect so that our
209///              recomputation test works. (Up to 24 bits in the integer
210///              part (the 24 bits of it that we compute) and 23 bits in
211///              the fraction part may be lost to cancelation before we
212///              recompute.)
213///
214///      jz      local integer variable indicating the number of
215///              terms of ipio2[] used.
216///
217///      jx      nx - 1
218///
219///      jv      index for pointing to the suitable ipio2[] for the
220///              computation. In general, we want
221///                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
222///              is an integer. Thus
223///                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
224///              Hence jv = max(0,(e0-3)/24).
225///
226///      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
227///
228///      q[]     double array with integral value, representing the
229///              24-bits chunk of the product of x and 2/pi.
230///
231///      q0      the corresponding exponent of q[0]. Note that the
232///              exponent for q[i] would be q0-24*i.
233///
234///      PIo2[]  double precision array, obtained by cutting pi/2
235///              into 24 bits chunks.
236///
237///      f[]     ipio2[] in floating point
238///
239///      iq[]    integer array by breaking up q[] in 24-bits chunk.
240///
241///      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
242///
243///      ih      integer. If >0 it indicates q[] is >= 0.5, hence
244///              it also indicates the *sign* of the result.
245///
246///
247///
248/// Constants:
249/// The hexadecimal values are the intended ones for the following
250/// constants. The decimal values may be used, provided that the
251/// compiler will convert from decimal to binary accurately enough
252/// to produce the hexadecimal values shown.
253///
254pub fn rem_pio2_large(x: []const f64, y: []f64, e0: i32, nx: i32, prec: usize) i32 {
255    var jz: i32 = undefined;
256    var jx: i32 = undefined;
257    var jv: i32 = undefined;
258    var jp: i32 = undefined;
259    var jk: i32 = undefined;
260    var carry: i32 = undefined;
261    var n: i32 = undefined;
262    var iq: [20]i32 = undefined;
263    var i: i32 = undefined;
264    var j: i32 = undefined;
265    var k: i32 = undefined;
266    var m: i32 = undefined;
267    var q0: i32 = undefined;
268    var ih: i32 = undefined;
269
270    var z: f64 = undefined;
271    var fw: f64 = undefined;
272    var f: [20]f64 = undefined;
273    var fq: [20]f64 = undefined;
274    var q: [20]f64 = undefined;
275
276    // initialize jk
277    jk = init_jk[prec];
278    jp = jk;
279
280    // determine jx,jv,q0, note that 3>q0
281    jx = nx - 1;
282    jv = @divFloor(e0 - 3, 24);
283    if (jv < 0) jv = 0;
284    q0 = e0 - 24 * (jv + 1);
285
286    // set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]
287    j = jv - jx;
288    m = jx + jk;
289    i = 0;
290    while (i <= m) : ({
291        i += 1;
292        j += 1;
293    }) {
294        f[@intCast(i)] = if (j < 0) 0.0 else @floatFromInt(ipio2[@intCast(j)]);
295    }
296
297    // compute q[0],q[1],...q[jk]
298    i = 0;
299    while (i <= jk) : (i += 1) {
300        j = 0;
301        fw = 0;
302        while (j <= jx) : (j += 1) {
303            fw += x[@intCast(j)] * f[@intCast(jx + i - j)];
304        }
305        q[@intCast(i)] = fw;
306    }
307
308    jz = jk;
309
310    // This is to handle a non-trivial goto translation from C.
311    // An unconditional return statement is found at the end of this loop.
312    recompute: while (true) {
313        // distill q[] into iq[] reversingly
314        i = 0;
315        j = jz;
316        z = q[@intCast(jz)];
317        while (j > 0) : ({
318            i += 1;
319            j -= 1;
320        }) {
321            fw = @floatFromInt(@as(i32, @intFromFloat(0x1p-24 * z)));
322            iq[@intCast(i)] = @intFromFloat(z - 0x1p24 * fw);
323            z = q[@intCast(j - 1)] + fw;
324        }
325
326        // compute n
327        z = math.scalbn(z, q0); // actual value of z
328        z -= 8.0 * @floor(z * 0.125); // trim off integer >= 8
329        n = @intFromFloat(z);
330        z -= @floatFromInt(n);
331        ih = 0;
332        if (q0 > 0) { // need iq[jz-1] to determine n
333            i = iq[@intCast(jz - 1)] >> @intCast(24 - q0);
334            n += i;
335            iq[@intCast(jz - 1)] -= i << @intCast(24 - q0);
336            ih = iq[@intCast(jz - 1)] >> @intCast(23 - q0);
337        } else if (q0 == 0) {
338            ih = iq[@intCast(jz - 1)] >> 23;
339        } else if (z >= 0.5) {
340            ih = 2;
341        }
342
343        if (ih > 0) { // q > 0.5
344            n += 1;
345            carry = 0;
346            i = 0;
347            while (i < jz) : (i += 1) { // compute 1-q
348                j = iq[@intCast(i)];
349                if (carry == 0) {
350                    if (j != 0) {
351                        carry = 1;
352                        iq[@intCast(i)] = 0x1000000 - j;
353                    }
354                } else {
355                    iq[@intCast(i)] = 0xffffff - j;
356                }
357            }
358            if (q0 > 0) { // rare case: chance is 1 in 12
359                @branchHint(.unlikely);
360                switch (q0) {
361                    1 => iq[@intCast(jz - 1)] &= 0x7fffff,
362                    2 => iq[@intCast(jz - 1)] &= 0x3fffff,
363                    else => unreachable,
364                }
365            }
366            if (ih == 2) {
367                z = 1.0 - z;
368                if (carry != 0) {
369                    z -= math.scalbn(@as(f64, 1.0), q0);
370                }
371            }
372        }
373
374        // check if recomputation is needed
375        if (z == 0.0) {
376            j = 0;
377            i = jz - 1;
378            while (i >= jk) : (i -= 1) {
379                j |= iq[@intCast(i)];
380            }
381
382            if (j == 0) { // need recomputation
383                k = 1;
384                while (iq[@intCast(jk - k)] == 0) : (k += 1) {
385                    // k = no. of terms needed
386                }
387
388                i = jz + 1;
389                while (i <= jz + k) : (i += 1) { // add q[jz+1] to q[jz+k]
390                    f[@intCast(jx + i)] = @floatFromInt(ipio2[@intCast(jv + i)]);
391                    j = 0;
392                    fw = 0;
393                    while (j <= jx) : (j += 1) {
394                        fw += x[@intCast(j)] * f[@intCast(jx + i - j)];
395                    }
396                    q[@intCast(i)] = fw;
397                }
398                jz += k;
399                continue :recompute; // mimic goto recompute
400            }
401        }
402
403        // chop off zero terms
404        if (z == 0.0) {
405            jz -= 1;
406            q0 -= 24;
407            while (iq[@intCast(jz)] == 0) {
408                jz -= 1;
409                q0 -= 24;
410            }
411        } else { // break z into 24-bit if necessary
412            z = math.scalbn(z, -q0);
413            if (z >= 0x1p24) {
414                fw = @floatFromInt(@as(i32, @intFromFloat(0x1p-24 * z)));
415                iq[@intCast(jz)] = @intFromFloat(z - 0x1p24 * fw);
416                jz += 1;
417                q0 += 24;
418                iq[@intCast(jz)] = @intFromFloat(fw);
419            } else {
420                iq[@intCast(jz)] = @intFromFloat(z);
421            }
422        }
423
424        // convert integer "bit" chunk to floating-point value
425        fw = math.scalbn(@as(f64, 1.0), q0);
426        i = jz;
427        while (i >= 0) : (i -= 1) {
428            q[@intCast(i)] = fw * @as(f64, @floatFromInt(iq[@intCast(i)]));
429            fw *= 0x1p-24;
430        }
431
432        // compute PIo2[0,...,jp]*q[jz,...,0]
433        i = jz;
434        while (i >= 0) : (i -= 1) {
435            fw = 0;
436            k = 0;
437            while (k <= jp and k <= jz - i) : (k += 1) {
438                fw += PIo2[@intCast(k)] * q[@intCast(i + k)];
439            }
440            fq[@intCast(jz - i)] = fw;
441        }
442
443        // compress fq[] into y[]
444        switch (prec) {
445            0 => {
446                fw = 0.0;
447                i = jz;
448                while (i >= 0) : (i -= 1) {
449                    fw += fq[@intCast(i)];
450                }
451                y[0] = if (ih == 0) fw else -fw;
452            },
453
454            1, 2 => {
455                fw = 0.0;
456                i = jz;
457                while (i >= 0) : (i -= 1) {
458                    fw += fq[@intCast(i)];
459                }
460                // TODO: drop excess precision here once double_t is used
461                fw = fw;
462                y[0] = if (ih == 0) fw else -fw;
463                fw = fq[0] - fw;
464                i = 1;
465                while (i <= jz) : (i += 1) {
466                    fw += fq[@intCast(i)];
467                }
468                y[1] = if (ih == 0) fw else -fw;
469            },
470            3 => { // painful
471                i = jz;
472                while (i > 0) : (i -= 1) {
473                    fw = fq[@intCast(i - 1)] + fq[@intCast(i)];
474                    fq[@intCast(i)] += fq[@intCast(i - 1)] - fw;
475                    fq[@intCast(i - 1)] = fw;
476                }
477                i = jz;
478                while (i > 1) : (i -= 1) {
479                    fw = fq[@intCast(i - 1)] + fq[@intCast(i)];
480                    fq[@intCast(i)] += fq[@intCast(i - 1)] - fw;
481                    fq[@intCast(i - 1)] = fw;
482                }
483                fw = 0;
484                i = jz;
485                while (i >= 2) : (i -= 1) {
486                    fw += fq[@intCast(i)];
487                }
488                if (ih == 0) {
489                    y[0] = fq[0];
490                    y[1] = fq[1];
491                    y[2] = fw;
492                } else {
493                    y[0] = -fq[0];
494                    y[1] = -fq[1];
495                    y[2] = -fw;
496                }
497            },
498            else => unreachable,
499        }
500
501        return n & 7;
502    }
503}