master
  1const std = @import("std");
  2const math = std.math;
  3const builtin = @import("builtin");
  4const common = @import("./common.zig");
  5
  6/// Ported from:
  7/// https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc
  8pub inline fn mulf3(comptime T: type, a: T, b: T) T {
  9    @setRuntimeSafety(common.test_safety);
 10    const typeWidth = @typeInfo(T).float.bits;
 11    const significandBits = math.floatMantissaBits(T);
 12    const fractionalBits = math.floatFractionalBits(T);
 13    const exponentBits = math.floatExponentBits(T);
 14
 15    const Z = std.meta.Int(.unsigned, typeWidth);
 16
 17    // ZSignificand is large enough to contain the significand, including an explicit integer bit
 18    const ZSignificand = PowerOfTwoSignificandZ(T);
 19    const ZSignificandBits = @typeInfo(ZSignificand).int.bits;
 20
 21    const roundBit = (1 << (ZSignificandBits - 1));
 22    const signBit = (@as(Z, 1) << (significandBits + exponentBits));
 23    const maxExponent = ((1 << exponentBits) - 1);
 24    const exponentBias = (maxExponent >> 1);
 25
 26    const integerBit = (@as(ZSignificand, 1) << fractionalBits);
 27    const quietBit = integerBit >> 1;
 28    const significandMask = (@as(Z, 1) << significandBits) - 1;
 29
 30    const absMask = signBit - 1;
 31    const qnanRep = @as(Z, @bitCast(math.nan(T))) | quietBit;
 32    const infRep: Z = @bitCast(math.inf(T));
 33    const minNormalRep: Z = @bitCast(math.floatMin(T));
 34
 35    const ZExp = if (typeWidth >= 32) u32 else Z;
 36    const aExponent: ZExp = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
 37    const bExponent: ZExp = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
 38    const productSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;
 39
 40    var aSignificand: ZSignificand = @intCast(@as(Z, @bitCast(a)) & significandMask);
 41    var bSignificand: ZSignificand = @intCast(@as(Z, @bitCast(b)) & significandMask);
 42    var scale: i32 = 0;
 43
 44    // Detect if a or b is zero, denormal, infinity, or NaN.
 45    if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
 46        const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
 47        const bAbs: Z = @as(Z, @bitCast(b)) & absMask;
 48
 49        // NaN * anything = qNaN
 50        if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
 51        // anything * NaN = qNaN
 52        if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
 53
 54        if (aAbs == infRep) {
 55            // infinity * non-zero = +/- infinity
 56            if (bAbs != 0) {
 57                return @bitCast(aAbs | productSign);
 58            } else {
 59                // infinity * zero = NaN
 60                return @bitCast(qnanRep);
 61            }
 62        }
 63
 64        if (bAbs == infRep) {
 65            //? non-zero * infinity = +/- infinity
 66            if (aAbs != 0) {
 67                return @bitCast(bAbs | productSign);
 68            } else {
 69                // zero * infinity = NaN
 70                return @bitCast(qnanRep);
 71            }
 72        }
 73
 74        // zero * anything = +/- zero
 75        if (aAbs == 0) return @bitCast(productSign);
 76        // anything * zero = +/- zero
 77        if (bAbs == 0) return @bitCast(productSign);
 78
 79        // one or both of a or b is denormal, the other (if applicable) is a
 80        // normal number.  Renormalize one or both of a and b, and set scale to
 81        // include the necessary exponent adjustment.
 82        if (aAbs < minNormalRep) scale += normalize(T, &aSignificand);
 83        if (bAbs < minNormalRep) scale += normalize(T, &bSignificand);
 84    }
 85
 86    // Or in the implicit significand bit.  (If we fell through from the
 87    // denormal path it was already set by normalize( ), but setting it twice
 88    // won't hurt anything.)
 89    aSignificand |= integerBit;
 90    bSignificand |= integerBit;
 91
 92    // Get the significand of a*b.  Before multiplying the significands, shift
 93    // one of them left to left-align it in the field.  Thus, the product will
 94    // have (exponentBits + 2) integral digits, all but two of which must be
 95    // zero.  Normalizing this result is just a conditional left-shift by one
 96    // and bumping the exponent accordingly.
 97    var productHi: ZSignificand = undefined;
 98    var productLo: ZSignificand = undefined;
 99    const left_align_shift = ZSignificandBits - fractionalBits - 1;
100    common.wideMultiply(ZSignificand, aSignificand, bSignificand << left_align_shift, &productHi, &productLo);
101
102    var productExponent: i32 = @as(i32, @intCast(aExponent + bExponent)) - exponentBias + scale;
103
104    // Normalize the significand, adjust exponent if needed.
105    if ((productHi & integerBit) != 0) {
106        productExponent +%= 1;
107    } else {
108        productHi = (productHi << 1) | (productLo >> (ZSignificandBits - 1));
109        productLo = productLo << 1;
110    }
111
112    // If we have overflowed the type, return +/- infinity.
113    if (productExponent >= maxExponent) return @bitCast(infRep | productSign);
114
115    var result: Z = undefined;
116    if (productExponent <= 0) {
117        // Result is denormal before rounding
118        //
119        // If the result is so small that it just underflows to zero, return
120        // a zero of the appropriate sign.  Mathematically there is no need to
121        // handle this case separately, but we make it a special case to
122        // simplify the shift logic.
123        const shift: u32 = @truncate(@as(Z, 1) -% @as(u32, @bitCast(productExponent)));
124        if (shift >= ZSignificandBits) return @bitCast(productSign);
125
126        // Otherwise, shift the significand of the result so that the round
127        // bit is the high bit of productLo.
128        const sticky = wideShrWithTruncation(ZSignificand, &productHi, &productLo, shift);
129        productLo |= @intFromBool(sticky);
130        result = productHi;
131
132        // We include the integer bit so that rounding will carry to the exponent,
133        // but it will be removed later if the result is still denormal
134        if (significandBits != fractionalBits) result |= integerBit;
135    } else {
136        // Result is normal before rounding; insert the exponent.
137        result = productHi & significandMask;
138        result |= @as(Z, @intCast(productExponent)) << significandBits;
139    }
140
141    // Final rounding.  The final result may overflow to infinity, or underflow
142    // to zero, but those are the correct results in those cases.  We use the
143    // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
144    if (productLo > roundBit) result +%= 1;
145    if (productLo == roundBit) result +%= result & 1;
146
147    // Restore any explicit integer bit, if it was rounded off
148    if (significandBits != fractionalBits) {
149        if ((result >> significandBits) != 0) {
150            result |= integerBit;
151        } else {
152            result &= ~integerBit;
153        }
154    }
155
156    // Insert the sign of the result:
157    result |= productSign;
158
159    return @bitCast(result);
160}
161
162/// Returns `true` if the right shift is inexact (i.e. any bit shifted out is non-zero)
163///
164/// This is analogous to an shr version of `@shlWithOverflow`
165fn wideShrWithTruncation(comptime Z: type, hi: *Z, lo: *Z, count: u32) bool {
166    @setRuntimeSafety(common.test_safety);
167    const typeWidth = @typeInfo(Z).int.bits;
168    var inexact = false;
169    if (count < typeWidth) {
170        inexact = (lo.* << @intCast(typeWidth -% count)) != 0;
171        lo.* = (hi.* << @intCast(typeWidth -% count)) | (lo.* >> @intCast(count));
172        hi.* = hi.* >> @intCast(count);
173    } else if (count < 2 * typeWidth) {
174        inexact = (hi.* << @intCast(2 * typeWidth -% count) | lo.*) != 0;
175        lo.* = hi.* >> @intCast(count -% typeWidth);
176        hi.* = 0;
177    } else {
178        inexact = (hi.* | lo.*) != 0;
179        lo.* = 0;
180        hi.* = 0;
181    }
182    return inexact;
183}
184
185fn normalize(comptime T: type, significand: *PowerOfTwoSignificandZ(T)) i32 {
186    const Z = PowerOfTwoSignificandZ(T);
187    const integerBit = @as(Z, 1) << math.floatFractionalBits(T);
188
189    const shift = @clz(significand.*) - @clz(integerBit);
190    significand.* <<= @intCast(shift);
191    return @as(i32, 1) - shift;
192}
193
194/// Returns a power-of-two integer type that is large enough to contain
195/// the significand of T, including an explicit integer bit
196fn PowerOfTwoSignificandZ(comptime T: type) type {
197    const bits = math.ceilPowerOfTwoAssert(u16, math.floatFractionalBits(T) + 1);
198    return std.meta.Int(.unsigned, bits);
199}
200
201test {
202    _ = @import("mulf3_test.zig");
203}