master
  1//! Ported from musl, which is licensed under the MIT license:
  2//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
  3//!
  4//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
  5//! https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
  6
  7const std = @import("std");
  8const builtin = @import("builtin");
  9const math = std.math;
 10const expect = std.testing.expect;
 11const expectEqual = std.testing.expectEqual;
 12const maxInt = std.math.maxInt;
 13const arch = builtin.cpu.arch;
 14const common = @import("common.zig");
 15
 16pub const panic = common.panic;
 17
 18comptime {
 19    @export(&__log2h, .{ .name = "__log2h", .linkage = common.linkage, .visibility = common.visibility });
 20    @export(&log2f, .{ .name = "log2f", .linkage = common.linkage, .visibility = common.visibility });
 21    @export(&log2, .{ .name = "log2", .linkage = common.linkage, .visibility = common.visibility });
 22    @export(&__log2x, .{ .name = "__log2x", .linkage = common.linkage, .visibility = common.visibility });
 23    if (common.want_ppc_abi) {
 24        @export(&log2q, .{ .name = "log2f128", .linkage = common.linkage, .visibility = common.visibility });
 25    }
 26    @export(&log2q, .{ .name = "log2q", .linkage = common.linkage, .visibility = common.visibility });
 27    @export(&log2l, .{ .name = "log2l", .linkage = common.linkage, .visibility = common.visibility });
 28}
 29
 30pub fn __log2h(a: f16) callconv(.c) f16 {
 31    // TODO: more efficient implementation
 32    return @floatCast(log2f(a));
 33}
 34
 35pub fn log2f(x_: f32) callconv(.c) f32 {
 36    const ivln2hi: f32 = 1.4428710938e+00;
 37    const ivln2lo: f32 = -1.7605285393e-04;
 38    const Lg1: f32 = 0xaaaaaa.0p-24;
 39    const Lg2: f32 = 0xccce13.0p-25;
 40    const Lg3: f32 = 0x91e9ee.0p-25;
 41    const Lg4: f32 = 0xf89e26.0p-26;
 42
 43    var x = x_;
 44    var u: u32 = @bitCast(x);
 45    var ix = u;
 46    var k: i32 = 0;
 47
 48    // x < 2^(-126)
 49    if (ix < 0x00800000 or ix >> 31 != 0) {
 50        // log(+-0) = -inf
 51        if (ix << 1 == 0) {
 52            return -math.inf(f32);
 53        }
 54        // log(-#) = nan
 55        if (ix >> 31 != 0) {
 56            return math.nan(f32);
 57        }
 58
 59        k -= 25;
 60        x *= 0x1.0p25;
 61        ix = @bitCast(x);
 62    } else if (ix >= 0x7F800000) {
 63        return x;
 64    } else if (ix == 0x3F800000) {
 65        return 0;
 66    }
 67
 68    // x into [sqrt(2) / 2, sqrt(2)]
 69    ix += 0x3F800000 - 0x3F3504F3;
 70    k += @as(i32, @intCast(ix >> 23)) - 0x7F;
 71    ix = (ix & 0x007FFFFF) + 0x3F3504F3;
 72    x = @bitCast(ix);
 73
 74    const f = x - 1.0;
 75    const s = f / (2.0 + f);
 76    const z = s * s;
 77    const w = z * z;
 78    const t1 = w * (Lg2 + w * Lg4);
 79    const t2 = z * (Lg1 + w * Lg3);
 80    const R = t2 + t1;
 81    const hfsq = 0.5 * f * f;
 82
 83    var hi = f - hfsq;
 84    u = @bitCast(hi);
 85    u &= 0xFFFFF000;
 86    hi = @bitCast(u);
 87    const lo = f - hi - hfsq + s * (hfsq + R);
 88    return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @as(f32, @floatFromInt(k));
 89}
 90
 91pub fn log2(x_: f64) callconv(.c) f64 {
 92    const ivln2hi: f64 = 1.44269504072144627571e+00;
 93    const ivln2lo: f64 = 1.67517131648865118353e-10;
 94    const Lg1: f64 = 6.666666666666735130e-01;
 95    const Lg2: f64 = 3.999999999940941908e-01;
 96    const Lg3: f64 = 2.857142874366239149e-01;
 97    const Lg4: f64 = 2.222219843214978396e-01;
 98    const Lg5: f64 = 1.818357216161805012e-01;
 99    const Lg6: f64 = 1.531383769920937332e-01;
100    const Lg7: f64 = 1.479819860511658591e-01;
101
102    var x = x_;
103    var ix: u64 = @bitCast(x);
104    var hx: u32 = @intCast(ix >> 32);
105    var k: i32 = 0;
106
107    if (hx < 0x00100000 or hx >> 31 != 0) {
108        // log(+-0) = -inf
109        if (ix << 1 == 0) {
110            return -math.inf(f64);
111        }
112        // log(-#) = nan
113        if (hx >> 31 != 0) {
114            return math.nan(f64);
115        }
116
117        // subnormal, scale x
118        k -= 54;
119        x *= 0x1.0p54;
120        hx = @intCast(@as(u64, @bitCast(x)) >> 32);
121    } else if (hx >= 0x7FF00000) {
122        return x;
123    } else if (hx == 0x3FF00000 and ix << 32 == 0) {
124        return 0;
125    }
126
127    // x into [sqrt(2) / 2, sqrt(2)]
128    hx += 0x3FF00000 - 0x3FE6A09E;
129    k += @as(i32, @intCast(hx >> 20)) - 0x3FF;
130    hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
131    ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
132    x = @bitCast(ix);
133
134    const f = x - 1.0;
135    const hfsq = 0.5 * f * f;
136    const s = f / (2.0 + f);
137    const z = s * s;
138    const w = z * z;
139    const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
140    const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
141    const R = t2 + t1;
142
143    // hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
144    var hi = f - hfsq;
145    var hii = @as(u64, @bitCast(hi));
146    hii &= @as(u64, maxInt(u64)) << 32;
147    hi = @bitCast(hii);
148    const lo = f - hi - hfsq + s * (hfsq + R);
149
150    var val_hi = hi * ivln2hi;
151    var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
152
153    // spadd(val_hi, val_lo, y)
154    const y: f64 = @floatFromInt(k);
155    const ww = y + val_hi;
156    val_lo += (y - ww) + val_hi;
157    val_hi = ww;
158
159    return val_lo + val_hi;
160}
161
162pub fn __log2x(a: f80) callconv(.c) f80 {
163    // TODO: more efficient implementation
164    return @floatCast(log2q(a));
165}
166
167pub fn log2q(a: f128) callconv(.c) f128 {
168    // TODO: more correct implementation
169    return log2(@floatCast(a));
170}
171
172pub fn log2l(x: c_longdouble) callconv(.c) c_longdouble {
173    switch (@typeInfo(c_longdouble).float.bits) {
174        16 => return __log2h(x),
175        32 => return log2f(x),
176        64 => return log2(x),
177        80 => return __log2x(x),
178        128 => return log2q(x),
179        else => @compileError("unreachable"),
180    }
181}
182
183test "log2f() special" {
184    try expectEqual(log2f(0.0), -math.inf(f32));
185    try expectEqual(log2f(-0.0), -math.inf(f32));
186    try expect(math.isPositiveZero(log2f(1.0)));
187    try expectEqual(log2f(2.0), 1.0);
188    try expectEqual(log2f(math.inf(f32)), math.inf(f32));
189    try expect(math.isNan(log2f(-1.0)));
190    try expect(math.isNan(log2f(-math.inf(f32))));
191    try expect(math.isNan(log2f(math.nan(f32))));
192    try expect(math.isNan(log2f(math.snan(f32))));
193}
194
195test "log2f() sanity" {
196    try expect(math.isNan(log2f(-0x1.0223a0p+3)));
197    try expectEqual(log2f(0x1.161868p+2), 0x1.0f49acp+1);
198    try expect(math.isNan(log2f(-0x1.0c34b4p+3)));
199    try expect(math.isNan(log2f(-0x1.a206f0p+2)));
200    try expectEqual(log2f(0x1.288bbcp+3), 0x1.9b2676p+1);
201    try expectEqual(log2f(0x1.52efd0p-1), -0x1.30b494p-1); // Disagrees with GCC in last bit
202    try expect(math.isNan(log2f(-0x1.a05cc8p-2)));
203    try expectEqual(log2f(0x1.1f9efap-1), -0x1.a9f89ap-1);
204    try expectEqual(log2f(0x1.8c5db0p-1), -0x1.7a2c96p-2);
205    try expect(math.isNan(log2f(-0x1.5b86eap-1)));
206}
207
208test "log2f() boundary" {
209    try expectEqual(log2f(0x1.fffffep+127), 0x1p+7); // Max input value
210    try expectEqual(log2f(0x1p-149), -0x1.2ap+7); // Min positive input value
211    try expect(math.isNan(log2f(-0x1p-149))); // Min negative input value
212    try expectEqual(log2f(0x1.000002p+0), 0x1.715474p-23); // Last value before result reaches +0
213    try expectEqual(log2f(0x1.fffffep-1), -0x1.715478p-24); // Last value before result reaches -0
214    try expectEqual(log2f(0x1p-126), -0x1.f8p+6); // First subnormal
215    try expect(math.isNan(log2f(-0x1p-126))); // First negative subnormal
216
217}
218
219test "log2() special" {
220    try expectEqual(log2(0.0), -math.inf(f64));
221    try expectEqual(log2(-0.0), -math.inf(f64));
222    try expect(math.isPositiveZero(log2(1.0)));
223    try expectEqual(log2(2.0), 1.0);
224    try expectEqual(log2(math.inf(f64)), math.inf(f64));
225    try expect(math.isNan(log2(-1.0)));
226    try expect(math.isNan(log2(-math.inf(f64))));
227    try expect(math.isNan(log2(math.nan(f64))));
228    try expect(math.isNan(log2(math.snan(f64))));
229}
230
231test "log2() sanity" {
232    try expect(math.isNan(log2(-0x1.02239f3c6a8f1p+3)));
233    try expectEqual(log2(0x1.161868e18bc67p+2), 0x1.0f49ac3838580p+1);
234    try expect(math.isNan(log2(-0x1.0c34b3e01e6e7p+3)));
235    try expect(math.isNan(log2(-0x1.a206f0a19dcc4p+2)));
236    try expectEqual(log2(0x1.288bbb0d6a1e6p+3), 0x1.9b26760c2a57ep+1);
237    try expectEqual(log2(0x1.52efd0cd80497p-1), -0x1.30b490ef684c7p-1);
238    try expect(math.isNan(log2(-0x1.a05cc754481d1p-2)));
239    try expectEqual(log2(0x1.1f9ef934745cbp-1), -0x1.a9f89b5f5acb8p-1);
240    try expectEqual(log2(0x1.8c5db097f7442p-1), -0x1.7a2c947173f06p-2);
241    try expect(math.isNan(log2(-0x1.5b86ea8118a0ep-1)));
242}
243
244test "log2() boundary" {
245    try expectEqual(log2(0x1.fffffffffffffp+1023), 0x1p+10); // Max input value
246    try expectEqual(log2(0x1p-1074), -0x1.0c8p+10); // Min positive input value
247    try expect(math.isNan(log2(-0x1p-1074))); // Min negative input value
248    try expectEqual(log2(0x1.0000000000001p+0), 0x1.71547652b82fdp-52); // Last value before result reaches +0
249    try expectEqual(log2(0x1.fffffffffffffp-1), -0x1.71547652b82fep-53); // Last value before result reaches -0
250    try expectEqual(log2(0x1p-1022), -0x1.ffp+9); // First subnormal
251    try expect(math.isNan(log2(-0x1p-1022))); // First negative subnormal
252}