master
  1//! Ported from musl, which is licensed under the MIT license:
  2//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
  3//!
  4//! https://git.musl-libc.org/cgit/musl/tree/src/math/log10f.c
  5//! https://git.musl-libc.org/cgit/musl/tree/src/math/log10.c
  6
  7const std = @import("std");
  8const builtin = @import("builtin");
  9const math = std.math;
 10const expect = std.testing.expect;
 11const expectEqual = std.testing.expectEqual;
 12const maxInt = std.math.maxInt;
 13const arch = builtin.cpu.arch;
 14const common = @import("common.zig");
 15
 16pub const panic = common.panic;
 17
 18comptime {
 19    @export(&__log10h, .{ .name = "__log10h", .linkage = common.linkage, .visibility = common.visibility });
 20    @export(&log10f, .{ .name = "log10f", .linkage = common.linkage, .visibility = common.visibility });
 21    @export(&log10, .{ .name = "log10", .linkage = common.linkage, .visibility = common.visibility });
 22    @export(&__log10x, .{ .name = "__log10x", .linkage = common.linkage, .visibility = common.visibility });
 23    if (common.want_ppc_abi) {
 24        @export(&log10q, .{ .name = "log10f128", .linkage = common.linkage, .visibility = common.visibility });
 25    }
 26    @export(&log10q, .{ .name = "log10q", .linkage = common.linkage, .visibility = common.visibility });
 27    @export(&log10l, .{ .name = "log10l", .linkage = common.linkage, .visibility = common.visibility });
 28}
 29
 30pub fn __log10h(a: f16) callconv(.c) f16 {
 31    // TODO: more efficient implementation
 32    return @floatCast(log10f(a));
 33}
 34
 35pub fn log10f(x_: f32) callconv(.c) f32 {
 36    const ivln10hi: f32 = 4.3432617188e-01;
 37    const ivln10lo: f32 = -3.1689971365e-05;
 38    const log10_2hi: f32 = 3.0102920532e-01;
 39    const log10_2lo: f32 = 7.9034151668e-07;
 40    const Lg1: f32 = 0xaaaaaa.0p-24;
 41    const Lg2: f32 = 0xccce13.0p-25;
 42    const Lg3: f32 = 0x91e9ee.0p-25;
 43    const Lg4: f32 = 0xf89e26.0p-26;
 44
 45    var x = x_;
 46    var u: u32 = @bitCast(x);
 47    var ix = u;
 48    var k: i32 = 0;
 49
 50    // x < 2^(-126)
 51    if (ix < 0x00800000 or ix >> 31 != 0) {
 52        // log(+-0) = -inf
 53        if (ix << 1 == 0) {
 54            return -math.inf(f32);
 55        }
 56        // log(-#) = nan
 57        if (ix >> 31 != 0) {
 58            return math.nan(f32);
 59        }
 60
 61        k -= 25;
 62        x *= 0x1.0p25;
 63        ix = @bitCast(x);
 64    } else if (ix >= 0x7F800000) {
 65        return x;
 66    } else if (ix == 0x3F800000) {
 67        return 0;
 68    }
 69
 70    // x into [sqrt(2) / 2, sqrt(2)]
 71    ix += 0x3F800000 - 0x3F3504F3;
 72    k += @as(i32, @intCast(ix >> 23)) - 0x7F;
 73    ix = (ix & 0x007FFFFF) + 0x3F3504F3;
 74    x = @bitCast(ix);
 75
 76    const f = x - 1.0;
 77    const s = f / (2.0 + f);
 78    const z = s * s;
 79    const w = z * z;
 80    const t1 = w * (Lg2 + w * Lg4);
 81    const t2 = z * (Lg1 + w * Lg3);
 82    const R = t2 + t1;
 83    const hfsq = 0.5 * f * f;
 84
 85    var hi = f - hfsq;
 86    u = @bitCast(hi);
 87    u &= 0xFFFFF000;
 88    hi = @bitCast(u);
 89    const lo = f - hi - hfsq + s * (hfsq + R);
 90    const dk: f32 = @floatFromInt(k);
 91
 92    return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi + dk * log10_2hi;
 93}
 94
 95pub fn log10(x_: f64) callconv(.c) f64 {
 96    const ivln10hi: f64 = 4.34294481878168880939e-01;
 97    const ivln10lo: f64 = 2.50829467116452752298e-11;
 98    const log10_2hi: f64 = 3.01029995663611771306e-01;
 99    const log10_2lo: f64 = 3.69423907715893078616e-13;
100    const Lg1: f64 = 6.666666666666735130e-01;
101    const Lg2: f64 = 3.999999999940941908e-01;
102    const Lg3: f64 = 2.857142874366239149e-01;
103    const Lg4: f64 = 2.222219843214978396e-01;
104    const Lg5: f64 = 1.818357216161805012e-01;
105    const Lg6: f64 = 1.531383769920937332e-01;
106    const Lg7: f64 = 1.479819860511658591e-01;
107
108    var x = x_;
109    var ix: u64 = @bitCast(x);
110    var hx: u32 = @intCast(ix >> 32);
111    var k: i32 = 0;
112
113    if (hx < 0x00100000 or hx >> 31 != 0) {
114        // log(+-0) = -inf
115        if (ix << 1 == 0) {
116            return -math.inf(f64);
117        }
118        // log(-#) = nan
119        if (hx >> 31 != 0) {
120            return math.nan(f64);
121        }
122
123        // subnormal, scale x
124        k -= 54;
125        x *= 0x1.0p54;
126        hx = @intCast(@as(u64, @bitCast(x)) >> 32);
127    } else if (hx >= 0x7FF00000) {
128        return x;
129    } else if (hx == 0x3FF00000 and ix << 32 == 0) {
130        return 0;
131    }
132
133    // x into [sqrt(2) / 2, sqrt(2)]
134    hx += 0x3FF00000 - 0x3FE6A09E;
135    k += @as(i32, @intCast(hx >> 20)) - 0x3FF;
136    hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
137    ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
138    x = @bitCast(ix);
139
140    const f = x - 1.0;
141    const hfsq = 0.5 * f * f;
142    const s = f / (2.0 + f);
143    const z = s * s;
144    const w = z * z;
145    const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
146    const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
147    const R = t2 + t1;
148
149    // hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
150    var hi = f - hfsq;
151    var hii: u64 = @bitCast(hi);
152    hii &= @as(u64, maxInt(u64)) << 32;
153    hi = @bitCast(hii);
154    const lo = f - hi - hfsq + s * (hfsq + R);
155
156    // val_hi + val_lo ~ log10(1 + f) + k * log10(2)
157    var val_hi = hi * ivln10hi;
158    const dk: f64 = @floatFromInt(k);
159    const y = dk * log10_2hi;
160    var val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
161
162    // Extra precision multiplication
163    const ww = y + val_hi;
164    val_lo += (y - ww) + val_hi;
165    val_hi = ww;
166
167    return val_lo + val_hi;
168}
169
170pub fn __log10x(a: f80) callconv(.c) f80 {
171    // TODO: more efficient implementation
172    return @floatCast(log10q(a));
173}
174
175pub fn log10q(a: f128) callconv(.c) f128 {
176    // TODO: more correct implementation
177    return log10(@floatCast(a));
178}
179
180pub fn log10l(x: c_longdouble) callconv(.c) c_longdouble {
181    switch (@typeInfo(c_longdouble).float.bits) {
182        16 => return __log10h(x),
183        32 => return log10f(x),
184        64 => return log10(x),
185        80 => return __log10x(x),
186        128 => return log10q(x),
187        else => @compileError("unreachable"),
188    }
189}
190
191test "log10f() special" {
192    try expectEqual(log10f(0.0), -math.inf(f32));
193    try expectEqual(log10f(-0.0), -math.inf(f32));
194    try expect(math.isPositiveZero(log10f(1.0)));
195    try expectEqual(log10f(10.0), 1.0);
196    try expectEqual(log10f(0.1), -1.0);
197    try expectEqual(log10f(math.inf(f32)), math.inf(f32));
198    try expect(math.isNan(log10f(-1.0)));
199    try expect(math.isNan(log10f(-math.inf(f32))));
200    try expect(math.isNan(log10f(math.nan(f32))));
201    try expect(math.isNan(log10f(math.snan(f32))));
202}
203
204test "log10f() sanity" {
205    try expect(math.isNan(log10f(-0x1.0223a0p+3)));
206    try expectEqual(log10f(0x1.161868p+2), 0x1.46a9bcp-1);
207    try expect(math.isNan(log10f(-0x1.0c34b4p+3)));
208    try expect(math.isNan(log10f(-0x1.a206f0p+2)));
209    try expectEqual(log10f(0x1.288bbcp+3), 0x1.ef1300p-1);
210    try expectEqual(log10f(0x1.52efd0p-1), -0x1.6ee6dcp-3); // Disagrees with GCC in last bit
211    try expect(math.isNan(log10f(-0x1.a05cc8p-2)));
212    try expectEqual(log10f(0x1.1f9efap-1), -0x1.0075ccp-2);
213    try expectEqual(log10f(0x1.8c5db0p-1), -0x1.c75df8p-4);
214    try expect(math.isNan(log10f(-0x1.5b86eap-1)));
215}
216
217test "log10f() boundary" {
218    try expectEqual(log10f(0x1.fffffep+127), 0x1.344136p+5); // Max input value
219    try expectEqual(log10f(0x1p-149), -0x1.66d3e8p+5); // Min positive input value
220    try expect(math.isNan(log10f(-0x1p-149))); // Min negative input value
221    try expectEqual(log10f(0x1.000002p+0), 0x1.bcb7b0p-25); // Last value before result reaches +0
222    try expectEqual(log10f(0x1.fffffep-1), -0x1.bcb7b2p-26); // Last value before result reaches -0
223    try expectEqual(log10f(0x1p-126), -0x1.2f7030p+5); // First subnormal
224    try expect(math.isNan(log10f(-0x1p-126))); // First negative subnormal
225}
226
227test "log10() special" {
228    try expectEqual(log10(0.0), -math.inf(f64));
229    try expectEqual(log10(-0.0), -math.inf(f64));
230    try expect(math.isPositiveZero(log10(1.0)));
231    try expectEqual(log10(10.0), 1.0);
232    try expectEqual(log10(0.1), -1.0);
233    try expectEqual(log10(math.inf(f64)), math.inf(f64));
234    try expect(math.isNan(log10(-1.0)));
235    try expect(math.isNan(log10(-math.inf(f64))));
236    try expect(math.isNan(log10(math.nan(f64))));
237    try expect(math.isNan(log10(math.snan(f64))));
238}
239
240test "log10() sanity" {
241    try expect(math.isNan(log10(-0x1.02239f3c6a8f1p+3)));
242    try expectEqual(log10(0x1.161868e18bc67p+2), 0x1.46a9bd1d2eb87p-1);
243    try expect(math.isNan(log10(-0x1.0c34b3e01e6e7p+3)));
244    try expect(math.isNan(log10(-0x1.a206f0a19dcc4p+2)));
245    try expectEqual(log10(0x1.288bbb0d6a1e6p+3), 0x1.ef12fff994862p-1);
246    try expectEqual(log10(0x1.52efd0cd80497p-1), -0x1.6ee6db5a155cbp-3);
247    try expect(math.isNan(log10(-0x1.a05cc754481d1p-2)));
248    try expectEqual(log10(0x1.1f9ef934745cbp-1), -0x1.0075cda79d321p-2);
249    try expectEqual(log10(0x1.8c5db097f7442p-1), -0x1.c75df6442465ap-4);
250    try expect(math.isNan(log10(-0x1.5b86ea8118a0ep-1)));
251}
252
253test "log10() boundary" {
254    try expectEqual(log10(0x1.fffffffffffffp+1023), 0x1.34413509f79ffp+8); // Max input value
255    try expectEqual(log10(0x1p-1074), -0x1.434e6420f4374p+8); // Min positive input value
256    try expect(math.isNan(log10(-0x1p-1074))); // Min negative input value
257    try expectEqual(log10(0x1.0000000000001p+0), 0x1.bcb7b1526e50dp-54); // Last value before result reaches +0
258    try expectEqual(log10(0x1.fffffffffffffp-1), -0x1.bcb7b1526e50fp-55); // Last value before result reaches -0
259    try expectEqual(log10(0x1p-1022), -0x1.33a7146f72a42p+8); // First subnormal
260    try expect(math.isNan(log10(-0x1p-1022))); // First negative subnormal
261}