master
1const std = @import("std");
2const Int = std.meta.Int;
3const math = std.math;
4
5pub fn floatFromInt(comptime T: type, x: anytype) T {
6 if (x == 0) return 0;
7
8 // Various constants whose values follow from the type parameters.
9 // Any reasonable optimizer will fold and propagate all of these.
10 const Z = Int(.unsigned, @bitSizeOf(@TypeOf(x)));
11 const uT = Int(.unsigned, @bitSizeOf(T));
12 const inf = math.inf(T);
13 const float_bits = @bitSizeOf(T);
14 const int_bits = @bitSizeOf(@TypeOf(x));
15 const exp_bits = math.floatExponentBits(T);
16 const fractional_bits = math.floatFractionalBits(T);
17 const exp_bias = math.maxInt(Int(.unsigned, exp_bits - 1));
18 const implicit_bit = if (T != f80) @as(uT, 1) << fractional_bits else 0;
19 const max_exp = exp_bias;
20
21 // Sign
22 const abs_val = @abs(x);
23 const sign_bit = if (x < 0) @as(uT, 1) << (float_bits - 1) else 0;
24 var result: uT = sign_bit;
25
26 // Compute significand
27 const exp = int_bits - @clz(abs_val) - 1;
28 if (int_bits <= fractional_bits or exp <= fractional_bits) {
29 const shift_amt = fractional_bits - @as(math.Log2Int(uT), @intCast(exp));
30
31 // Shift up result to line up with the significand - no rounding required
32 result = @as(uT, @intCast(abs_val)) << shift_amt;
33 result ^= implicit_bit; // Remove implicit integer bit
34 } else {
35 const shift_amt: math.Log2Int(Z) = @intCast(exp - fractional_bits);
36 const exact_tie: bool = @ctz(abs_val) == shift_amt - 1;
37
38 // Shift down result and remove implicit integer bit
39 result = @as(uT, @intCast((abs_val >> (shift_amt - 1)))) ^ (implicit_bit << 1);
40
41 // Round result, including round-to-even for exact ties
42 result = ((result + 1) >> 1) & ~@as(uT, @intFromBool(exact_tie));
43 }
44
45 // Compute exponent
46 if ((int_bits > max_exp) and (exp > max_exp)) // If exponent too large, overflow to infinity
47 return @bitCast(sign_bit | @as(uT, @bitCast(inf)));
48
49 result += (@as(uT, exp) + exp_bias) << math.floatMantissaBits(T);
50
51 // If the result included a carry, we need to restore the explicit integer bit
52 if (T == f80) result |= 1 << fractional_bits;
53
54 return @bitCast(sign_bit | result);
55}
56
57const endian = @import("builtin").cpu.arch.endian();
58inline fn limb(limbs: []const u32, index: usize) u32 {
59 return switch (endian) {
60 .little => limbs[index],
61 .big => limbs[limbs.len - 1 - index],
62 };
63}
64
65pub inline fn floatFromBigInt(comptime T: type, comptime signedness: std.builtin.Signedness, x: []const u32) T {
66 switch (x.len) {
67 0 => return 0,
68 inline 1...4 => |limbs_len| return @floatFromInt(@as(
69 @Int(signedness, 32 * limbs_len),
70 @bitCast(x[0..limbs_len].*),
71 )),
72 else => {},
73 }
74
75 // sign implicit fraction round sticky
76 const I = comptime @Int(
77 signedness,
78 @as(u16, @intFromBool(signedness == .signed)) + 1 + math.floatFractionalBits(T) + 1 + 1,
79 );
80
81 const clrsb = clrsb: {
82 var clsb: usize = 0;
83 const sign_bits: u32 = switch (signedness) {
84 .signed => @bitCast(@as(i32, @bitCast(limb(x, x.len - 1))) >> 31),
85 .unsigned => 0,
86 };
87 for (0..x.len) |limb_index| {
88 const l = limb(x, x.len - 1 - limb_index) ^ sign_bits;
89 clsb += @clz(l);
90 if (l != 0) break;
91 }
92 break :clrsb clsb - @intFromBool(signedness == .signed);
93 };
94 const active_bits = 32 * x.len - clrsb;
95 const exponent = active_bits -| @bitSizeOf(I);
96 const exponent_limb = exponent / 32;
97 const sticky = for (0..exponent_limb) |limb_index| {
98 if (limb(x, limb_index) != 0) break true;
99 } else limb(x, exponent_limb) & ((@as(u32, 1) << @truncate(exponent)) - 1) != 0;
100 return math.ldexp(@as(T, @floatFromInt(
101 std.mem.readPackedIntNative(I, std.mem.sliceAsBytes(x), exponent) | @intFromBool(sticky),
102 )), @intCast(exponent));
103}
104
105test {
106 _ = @import("float_from_int_test.zig");
107}