master
  1const std = @import("std");
  2const builtin = @import("builtin");
  3const arch = builtin.cpu.arch;
  4
  5const common = @import("common.zig");
  6const normalize = common.normalize;
  7const wideMultiply = common.wideMultiply;
  8
  9pub const panic = common.panic;
 10
 11comptime {
 12    @export(&__divxf3, .{ .name = "__divxf3", .linkage = common.linkage, .visibility = common.visibility });
 13}
 14
 15pub fn __divxf3(a: f80, b: f80) callconv(.c) f80 {
 16    const T = f80;
 17    const Z = std.meta.Int(.unsigned, @bitSizeOf(T));
 18
 19    const significandBits = std.math.floatMantissaBits(T);
 20    const fractionalBits = std.math.floatFractionalBits(T);
 21    const exponentBits = std.math.floatExponentBits(T);
 22
 23    const signBit = (@as(Z, 1) << (significandBits + exponentBits));
 24    const maxExponent = ((1 << exponentBits) - 1);
 25    const exponentBias = (maxExponent >> 1);
 26
 27    const integerBit = (@as(Z, 1) << fractionalBits);
 28    const quietBit = integerBit >> 1;
 29    const significandMask = (@as(Z, 1) << significandBits) - 1;
 30
 31    const absMask = signBit - 1;
 32    const qnanRep = @as(Z, @bitCast(std.math.nan(T))) | quietBit;
 33    const infRep: Z = @bitCast(std.math.inf(T));
 34
 35    const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
 36    const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
 37    const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;
 38
 39    var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask;
 40    var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask;
 41    var scale: i32 = 0;
 42
 43    // Detect if a or b is zero, denormal, infinity, or NaN.
 44    if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
 45        const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
 46        const bAbs: Z = @as(Z, @bitCast(b)) & absMask;
 47
 48        // NaN / anything = qNaN
 49        if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
 50        // anything / NaN = qNaN
 51        if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
 52
 53        if (aAbs == infRep) {
 54            // infinity / infinity = NaN
 55            if (bAbs == infRep) {
 56                return @bitCast(qnanRep);
 57            }
 58            // infinity / anything else = +/- infinity
 59            else {
 60                return @bitCast(aAbs | quotientSign);
 61            }
 62        }
 63
 64        // anything else / infinity = +/- 0
 65        if (bAbs == infRep) return @bitCast(quotientSign);
 66
 67        if (aAbs == 0) {
 68            // zero / zero = NaN
 69            if (bAbs == 0) {
 70                return @bitCast(qnanRep);
 71            }
 72            // zero / anything else = +/- zero
 73            else {
 74                return @bitCast(quotientSign);
 75            }
 76        }
 77        // anything else / zero = +/- infinity
 78        if (bAbs == 0) return @bitCast(infRep | quotientSign);
 79
 80        // one or both of a or b is denormal, the other (if applicable) is a
 81        // normal number.  Renormalize one or both of a and b, and set scale to
 82        // include the necessary exponent adjustment.
 83        if (aAbs < integerBit) scale +%= normalize(T, &aSignificand);
 84        if (bAbs < integerBit) scale -%= normalize(T, &bSignificand);
 85    }
 86    var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale;
 87
 88    // Align the significand of b as a Q63 fixed-point number in the range
 89    // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
 90    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
 91    // is accurate to about 3.5 binary digits.
 92    const q63b: u64 = @intCast(bSignificand);
 93    var recip64 = @as(u64, 0x7504f333F9DE6484) -% q63b;
 94    // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
 95
 96    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
 97    //
 98    //     x1 = x0 * (2 - x0 * b)
 99    //
100    // This doubles the number of correct binary digits in the approximation
101    // with each iteration.
102    var correction64: u64 = undefined;
103    correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
104    recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
105    correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
106    recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
107    correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
108    recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
109    correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
110    recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
111    correction64 = @truncate(~(@as(u128, recip64) *% q63b >> 64) +% 1);
112    recip64 = @truncate(@as(u128, recip64) *% correction64 >> 63);
113
114    // The reciprocal may have overflowed to zero if the upper half of b is
115    // exactly 1.0.  This would sabatoge the full-width final stage of the
116    // computation that follows, so we adjust the reciprocal down by one bit.
117    recip64 -%= 1;
118
119    // We need to perform one more iteration to get us to 112 binary digits;
120    // The last iteration needs to happen with extra precision.
121
122    // NOTE: This operation is equivalent to __multi3, which is not implemented
123    //       in some architechures
124    var reciprocal: u128 = undefined;
125    var correction: u128 = undefined;
126    var dummy: u128 = undefined;
127    wideMultiply(u128, recip64, q63b, &dummy, &correction);
128
129    correction = -%correction;
130
131    const cHi: u64 = @truncate(correction >> 64);
132    const cLo: u64 = @truncate(correction);
133
134    var r64cH: u128 = undefined;
135    var r64cL: u128 = undefined;
136    wideMultiply(u128, recip64, cHi, &dummy, &r64cH);
137    wideMultiply(u128, recip64, cLo, &dummy, &r64cL);
138
139    reciprocal = r64cH + (r64cL >> 64);
140
141    // Adjust the final 128-bit reciprocal estimate downward to ensure that it
142    // is strictly smaller than the infinitely precise exact reciprocal. Because
143    // the computation of the Newton-Raphson step is truncating at every step,
144    // this adjustment is small; most of the work is already done.
145    reciprocal -%= 2;
146
147    // The numerical reciprocal is accurate to within 2^-112, lies in the
148    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
149    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
150    // in Q127 with the following properties:
151    //
152    //    1. q < a/b
153    //    2. q is in the interval [0.5, 2.0)
154    //    3. The error in q is bounded away from 2^-63 (actually, we have
155    //       many bits to spare, but this is all we need).
156
157    // We need a 128 x 128 multiply high to compute q.
158    var quotient128: u128 = undefined;
159    var quotientLo: u128 = undefined;
160    wideMultiply(u128, aSignificand << 2, reciprocal, &quotient128, &quotientLo);
161
162    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
163    // Right shift the quotient if it falls in the [1,2) range and adjust the
164    // exponent accordingly.
165    const quotient: u64 = if (quotient128 < (integerBit << 1)) b: {
166        quotientExponent -= 1;
167        break :b @intCast(quotient128);
168    } else @intCast(quotient128 >> 1);
169
170    // We are going to compute a residual of the form
171    //
172    //     r = a - q*b
173    //
174    // We know from the construction of q that r satisfies:
175    //
176    //     0 <= r < ulp(q)*b
177    //
178    // If r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
179    // already have the correct result.  The exact halfway case cannot occur.
180    const residual: u64 = -%(quotient *% q63b);
181
182    const writtenExponent = quotientExponent + exponentBias;
183    if (writtenExponent >= maxExponent) {
184        // If we have overflowed the exponent, return infinity.
185        return @bitCast(infRep | quotientSign);
186    } else if (writtenExponent < 1) {
187        if (writtenExponent == 0) {
188            // Check whether the rounded result is normal.
189            if (residual > (bSignificand >> 1)) { // round
190                if (quotient == (integerBit - 1)) // If the rounded result is normal, return it
191                    return @bitCast(@as(Z, @bitCast(std.math.floatMin(T))) | quotientSign);
192            }
193        }
194        // Flush denormals to zero.  In the future, it would be nice to add
195        // code to round them correctly.
196        return @bitCast(quotientSign);
197    } else {
198        const round = @intFromBool(residual > (bSignificand >> 1));
199        // Insert the exponent
200        var absResult = quotient | (@as(Z, @intCast(writtenExponent)) << significandBits);
201        // Round
202        absResult +%= round;
203        // Insert the sign and return
204        return @bitCast(absResult | quotientSign | integerBit);
205    }
206}
207
208test {
209    _ = @import("divxf3_test.zig");
210}