master
  1//! Ported from:
  2//!
  3//! https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c
  4
  5const std = @import("std");
  6const builtin = @import("builtin");
  7const arch = builtin.cpu.arch;
  8const common = @import("common.zig");
  9
 10const normalize = common.normalize;
 11const wideMultiply = common.wideMultiply;
 12
 13pub const panic = common.panic;
 14
 15comptime {
 16    if (common.want_aeabi) {
 17        @export(&__aeabi_ddiv, .{ .name = "__aeabi_ddiv", .linkage = common.linkage, .visibility = common.visibility });
 18    } else {
 19        @export(&__divdf3, .{ .name = "__divdf3", .linkage = common.linkage, .visibility = common.visibility });
 20    }
 21}
 22
 23pub fn __divdf3(a: f64, b: f64) callconv(.c) f64 {
 24    return div(a, b);
 25}
 26
 27fn __aeabi_ddiv(a: f64, b: f64) callconv(.{ .arm_aapcs = .{} }) f64 {
 28    return div(a, b);
 29}
 30
 31inline fn div(a: f64, b: f64) f64 {
 32    const Z = std.meta.Int(.unsigned, 64);
 33    const SignedZ = std.meta.Int(.signed, 64);
 34
 35    const significandBits = std.math.floatMantissaBits(f64);
 36    const exponentBits = std.math.floatExponentBits(f64);
 37
 38    const signBit = (@as(Z, 1) << (significandBits + exponentBits));
 39    const maxExponent = ((1 << exponentBits) - 1);
 40    const exponentBias = (maxExponent >> 1);
 41
 42    const implicitBit = (@as(Z, 1) << significandBits);
 43    const quietBit = implicitBit >> 1;
 44    const significandMask = implicitBit - 1;
 45
 46    const absMask = signBit - 1;
 47    const exponentMask = absMask ^ significandMask;
 48    const qnanRep = exponentMask | quietBit;
 49    const infRep = @as(Z, @bitCast(std.math.inf(f64)));
 50
 51    const aExponent: u32 = @truncate((@as(Z, @bitCast(a)) >> significandBits) & maxExponent);
 52    const bExponent: u32 = @truncate((@as(Z, @bitCast(b)) >> significandBits) & maxExponent);
 53    const quotientSign: Z = (@as(Z, @bitCast(a)) ^ @as(Z, @bitCast(b))) & signBit;
 54
 55    var aSignificand: Z = @as(Z, @bitCast(a)) & significandMask;
 56    var bSignificand: Z = @as(Z, @bitCast(b)) & significandMask;
 57    var scale: i32 = 0;
 58
 59    // Detect if a or b is zero, denormal, infinity, or NaN.
 60    if (aExponent -% 1 >= maxExponent - 1 or bExponent -% 1 >= maxExponent - 1) {
 61        const aAbs: Z = @as(Z, @bitCast(a)) & absMask;
 62        const bAbs: Z = @as(Z, @bitCast(b)) & absMask;
 63
 64        // NaN / anything = qNaN
 65        if (aAbs > infRep) return @bitCast(@as(Z, @bitCast(a)) | quietBit);
 66        // anything / NaN = qNaN
 67        if (bAbs > infRep) return @bitCast(@as(Z, @bitCast(b)) | quietBit);
 68
 69        if (aAbs == infRep) {
 70            // infinity / infinity = NaN
 71            if (bAbs == infRep) {
 72                return @bitCast(qnanRep);
 73            }
 74            // infinity / anything else = +/- infinity
 75            else {
 76                return @bitCast(aAbs | quotientSign);
 77            }
 78        }
 79
 80        // anything else / infinity = +/- 0
 81        if (bAbs == infRep) return @bitCast(quotientSign);
 82
 83        if (aAbs == 0) {
 84            // zero / zero = NaN
 85            if (bAbs == 0) {
 86                return @bitCast(qnanRep);
 87            }
 88            // zero / anything else = +/- zero
 89            else {
 90                return @bitCast(quotientSign);
 91            }
 92        }
 93        // anything else / zero = +/- infinity
 94        if (bAbs == 0) return @bitCast(infRep | quotientSign);
 95
 96        // one or both of a or b is denormal, the other (if applicable) is a
 97        // normal number.  Renormalize one or both of a and b, and set scale to
 98        // include the necessary exponent adjustment.
 99        if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand);
100        if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand);
101    }
102
103    // Or in the implicit significand bit.  (If we fell through from the
104    // denormal path it was already set by normalize( ), but setting it twice
105    // won't hurt anything.)
106    aSignificand |= implicitBit;
107    bSignificand |= implicitBit;
108    var quotientExponent: i32 = @as(i32, @bitCast(aExponent -% bExponent)) +% scale;
109
110    // Align the significand of b as a Q31 fixed-point number in the range
111    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
112    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
113    // is accurate to about 3.5 binary digits.
114    const q31b: u32 = @truncate(bSignificand >> 21);
115    var recip32 = @as(u32, 0x7504f333) -% q31b;
116
117    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
118    //
119    //     x1 = x0 * (2 - x0 * b)
120    //
121    // This doubles the number of correct binary digits in the approximation
122    // with each iteration, so after three iterations, we have about 28 binary
123    // digits of accuracy.
124    var correction32: u32 = undefined;
125    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
126    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
127    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
128    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
129    correction32 = @truncate(~(@as(u64, recip32) *% q31b >> 32) +% 1);
130    recip32 = @truncate(@as(u64, recip32) *% correction32 >> 31);
131
132    // recip32 might have overflowed to exactly zero in the preceding
133    // computation if the high word of b is exactly 1.0.  This would sabotage
134    // the full-width final stage of the computation that follows, so we adjust
135    // recip32 downward by one bit.
136    recip32 -%= 1;
137
138    // We need to perform one more iteration to get us to 56 binary digits;
139    // The last iteration needs to happen with extra precision.
140    const q63blo: u32 = @truncate(bSignificand << 11);
141    var correction: u64 = undefined;
142    var reciprocal: u64 = undefined;
143    correction = ~(@as(u64, recip32) *% q31b +% (@as(u64, recip32) *% q63blo >> 32)) +% 1;
144    const cHi: u32 = @truncate(correction >> 32);
145    const cLo: u32 = @truncate(correction);
146    reciprocal = @as(u64, recip32) *% cHi +% (@as(u64, recip32) *% cLo >> 32);
147
148    // We already adjusted the 32-bit estimate, now we need to adjust the final
149    // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
150    // than the infinitely precise exact reciprocal.  Because the computation
151    // of the Newton-Raphson step is truncating at every step, this adjustment
152    // is small; most of the work is already done.
153    reciprocal -%= 2;
154
155    // The numerical reciprocal is accurate to within 2^-56, lies in the
156    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
157    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
158    // in Q53 with the following properties:
159    //
160    //    1. q < a/b
161    //    2. q is in the interval [0.5, 2.0)
162    //    3. the error in q is bounded away from 2^-53 (actually, we have a
163    //       couple of bits to spare, but this is all we need).
164
165    // We need a 64 x 64 multiply high to compute q, which isn't a basic
166    // operation in C, so we need to be a little bit fussy.
167    var quotient: Z = undefined;
168    var quotientLo: Z = undefined;
169    wideMultiply(Z, aSignificand << 2, reciprocal, &quotient, &quotientLo);
170
171    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
172    // In either case, we are going to compute a residual of the form
173    //
174    //     r = a - q*b
175    //
176    // We know from the construction of q that r satisfies:
177    //
178    //     0 <= r < ulp(q)*b
179    //
180    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
181    // already have the correct result.  The exact halfway case cannot occur.
182    // We also take this time to right shift quotient if it falls in the [1,2)
183    // range and adjust the exponent accordingly.
184    var residual: Z = undefined;
185    if (quotient < (implicitBit << 1)) {
186        residual = (aSignificand << 53) -% quotient *% bSignificand;
187        quotientExponent -%= 1;
188    } else {
189        quotient >>= 1;
190        residual = (aSignificand << 52) -% quotient *% bSignificand;
191    }
192
193    const writtenExponent = quotientExponent +% exponentBias;
194
195    if (writtenExponent >= maxExponent) {
196        // If we have overflowed the exponent, return infinity.
197        return @bitCast(infRep | quotientSign);
198    } else if (writtenExponent < 1) {
199        if (writtenExponent == 0) {
200            // Check whether the rounded result is normal.
201            const round = @intFromBool((residual << 1) > bSignificand);
202            // Clear the implicit bit.
203            var absResult = quotient & significandMask;
204            // Round.
205            absResult += round;
206            if ((absResult & ~significandMask) != 0) {
207                // The rounded result is normal; return it.
208                return @bitCast(absResult | quotientSign);
209            }
210        }
211        // Flush denormals to zero.  In the future, it would be nice to add
212        // code to round them correctly.
213        return @bitCast(quotientSign);
214    } else {
215        const round = @intFromBool((residual << 1) > bSignificand);
216        // Clear the implicit bit
217        var absResult = quotient & significandMask;
218        // Insert the exponent
219        absResult |= @as(Z, @bitCast(@as(SignedZ, writtenExponent))) << significandBits;
220        // Round
221        absResult +%= round;
222        // Insert the sign and return
223        return @bitCast(absResult | quotientSign);
224    }
225}
226
227test {
228    _ = @import("divdf3_test.zig");
229}